精英家教网 > 高中数学 > 题目详情
3.复数z=i(-1+3i)在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 求出复数z,根据其代数形式的几何意义找出平面中对应的点的坐标,由坐标判断复数对应的点所在的象限

解答 解:复数z=i(-1+3i)=-i-3=-3-i,
∴z在复平面上对应的点的坐标为(-3,-1),在第三象限.
故选:C.

点评 本题考查得数代数形式的乘除运算,解题的关键是计算出复数z,再由其几何意义确定出它对应的点的坐标,判断出对应点所在的象限.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(cosx,-1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,求tan(2x-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中a1=1,Sn=4an-1+2,
(1)求a2,a3
(2)设bn=an+1-2an,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点,P是椭圆上一点(异于左、右顶点),过点P作∠F1PF2的角平分线交x轴于点M,若2|PM|2=|PF1|•|PF2|,则椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为24.(参考数据:sin15°=0.2588,sin7.5°=0.1305)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$p:|{1-\frac{x-1}{3}}|$<2;q:x2-2x+1-m2<0,若?p是?q的充分非必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知m,n为正实数,向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(1-n,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知F1,F2分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,P为椭圆上的一点,若∠F1PF2=90°,且△F1PF2的三边长成等差数列,则椭圆的离心率是(  )
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P(x,y)是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的任意一点,F1,F2是椭圆的两个焦点,且∠F1PF2≤120°,则该椭圆的离心率是(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案