【题目】甲、乙两人要对C处进行考察,甲在A处,乙在B处,基地在O处,此时∠AOB=90°,测得|AC|=5 km,|BC|=km,|AO|=|BO|=2 km,如图所示,试问甲、乙两人应以什么方向走,才能使两人的行程之和最小?
【答案】甲应以与OB平行的方向行走,乙应沿斜率为的直线向上方行走,才能使他们的行程和最小
【解析】试题分析:以O为原点,OB为x轴,建立直角坐标系,由两点间线段最短,所以甲沿着直线AC,乙沿着直线BC行走即可,只需求出C点坐标即可得直线的斜率,即为行走方向.
试题解析:
以O为原点,OB为x轴,建立直角坐标系(如图所示),
设C(x,y),则有A(0,2),B(2,0),
由|AC|=5,有=5,①
|BC|=,有=.②
由①②解得或
由x、y的实际意义知x>0,y>0,∴C(5,2).
而A(0,2),∴AC∥x轴,即AC∥OB.
由B(2,0)、C(5,2),知kBC==.
故甲应以与OB平行的方向行走,乙应沿斜率为的直线向上方行走,才能使他们的行程和最小
科目:高中数学 来源: 题型:
【题目】相传古代印度国王在奖赏他聪明能干的宰相达依尔(国际象棋发明者)时,问他需要什么,达依尔说:“国王只要在国际象棋棋盘的第一格子上放一粒麦子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64格(国际象棋棋盘格数是8×8=64),我就感恩不尽,其他什么也不要了.”国王想:“这才有多少,还不容易!”于是让人扛来一袋小麦,但不到一会儿就用完了,再来一袋很快又没有了,结果全印度的粮食用完还不够,国王很奇怪,怎么也算不清这笔账.请你设计一个程序框图表示其算法,来帮国王计算一下需要多少粒小麦.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)设A(x1 , f(x1)),B(x2 , f(x2)),且x1≠x2 , 证明: <f′( ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣2a|,a∈R.
(1)若不等式f(x)<1的解集为{x|1<x<3},求a的值;
(2)若存在x0∈R,使f(x0)+x0<3,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式 恒成立,则实数a的取值范围为( )
A.[15,+∞)
B.
C.[1,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为 , ;两小时以上且不超过三小时还车的概率分别为 , ;两人租车时间都不会超过四小时. (Ⅰ)求甲乙两人所付的租车费用相同的概率.
(Ⅱ)设甲乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com