精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{{\begin{array}{l}{xlnx-2x,x>0}\\{{x^2}+\frac{3}{2}x,x≤0}\end{array}}$的图象上有且仅有四个不同的点关于直线y=-1的对称点在y=kx-1的图象上,则实数k的取值范围是(  )
A.$({\frac{1}{2},1})$B.$({\frac{1}{2},\frac{3}{4}})$C.$({\frac{1}{3},1})$D.$({\frac{1}{2},2})$

分析 由题意可化为函数f(x)图象与y=-kx-1的图象有且只有四个不同的交点,结合题意作图求解即可

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{xlnx-2x,x>0}\\{{x^2}+\frac{3}{2}x,x≤0}\end{array}}$的图象上有且仅有四个不同的点关于直线y=-1的对称点在y=kx-1的图象上,
而函数y=kx-1关于直线y=-1的对称图象为y=-kx-1,
∴f(x)=$\left\{{\begin{array}{l}{xlnx-2x,x>0}\\{{x^2}+\frac{3}{2}x,x≤0}\end{array}}$的图象与y=-kx-1的图象有且只有四个不同的交点,
作函数f(x)=$\left\{{\begin{array}{l}{xlnx-2x,x>0}\\{{x^2}+\frac{3}{2}x,x≤0}\end{array}}$的图象与y=-kx-1的图象如下,
易知直线y=-kx-1恒过点A(0,-1),
设直线AC与y=xlnx-2x相切于点C(x,xlnx-2x),
y′=lnx-1,
故lnx-1=$\frac{xlnx-2x+1}{x}$,
解得,x=1;
故kAC=-1;
设直线AB与y=x2+$\frac{3}{2}$x相切于点B(x,x2+$\frac{3}{2}$x),
y′=2x+$\frac{3}{2}$,
故2x+$\frac{3}{2}$=$\frac{{x}^{2}+\frac{3}{2}x+1}{x}$,
解得,x=-1;
故kAB=-2+$\frac{3}{2}$=-$\frac{1}{2}$;
故-1<-k<-$\frac{1}{2}$,
故$\frac{1}{2}$<k<1;
故选:A.

点评 本题考查了函数的性质的判断与应用,同时考查了学生的作图能力及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图所示,棱长都相等的三棱锥A-BCD中,E、F分别是棱AB、CD的中点,异面直线AD与EF所成的角是(  )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.海上有 A,B两个小岛相距 10nmile,从 A岛望C岛和 B 岛成 60° 的视角,从B岛望 C岛和 A岛成75°的视角,则 B,C间的距离为(  )
A.10$\sqrt{3}$nmileB.$\frac{10\sqrt{6}}{3}$nmileC.5$\sqrt{2}$nmileD.5$\sqrt{6}$nmile

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的导数
(1)y=x4-2x2+3x-1;
(2)y=$\frac{x-1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,cos2B-5cos(A+C)=2.
(1)求角B的值;
(2)若cosA=$\frac{1}{7}$,△ABC的面积为10$\sqrt{3}$,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax2-2ax+c满足f(2017)<f(-2016),则满足f(m)≤f(0)的实数m的取值范围是(  )
A.(-∞,0]B.[0,2]C.(-∞,0]∪[2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定义域是(  )
A.(0,2)B.(0,2]C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=a2x3+asinx+|x|+1,a为常数,若f(3)=5,则f(-3)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面上$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=1,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,|$\overrightarrow{OP}$|<$\frac{2}{3}$,则$|{\overrightarrow{OA}}|$的取值范围是(  )
A.$(0,\frac{{\sqrt{14}}}{3}]$B.$(\frac{{\sqrt{14}}}{3},\sqrt{2}]$C.$(\frac{{\sqrt{5}}}{2},\sqrt{5}]$D.$(\frac{{\sqrt{7}}}{2},\sqrt{7}]$

查看答案和解析>>

同步练习册答案