精英家教网 > 高中数学 > 题目详情
7.如图所示,棱长都相等的三棱锥A-BCD中,E、F分别是棱AB、CD的中点,异面直线AD与EF所成的角是(  )
A.45°B.30°C.60°D.90°

分析 取AC的中点O,连接OE,OF,则OF∥AD,则∠EFO是异面直线EF、AD所成角,证明OE2+OF2=EF2,即可得出结论.

解答 解:取AC的中点O,连接OE,OF,则OF∥AD,
∴∠EFO是异面直线EF、AD所成角,
连接CE,则CE=$\frac{\sqrt{3}}{2}$a,∴EF=$\frac{\sqrt{2}}{2}$a,
∵OE=OF=$\frac{a}{2}$,
∴OE2+OF2=EF2
∴OE⊥OF,
∴∠EFO=45°.
故选A.

点评 本题考查异面直线所成角,同时考查了转化与化归的思想,计算能力和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值及△ABC的外接圆的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了检测某种产品的质量,抽取了一个容量为100的样本,数据分组如下:
分组频数频率
[10.75,10.85)3
[10.85,10.95)9
[10.95,11.05)13
[11.05,11.15)16
[11.15,11.25)26
[11.25,11.35)20
[11.35,11.45)7
[11.45,11.55)a
[11.55,11.65)m0.02
(1)求出表中a,m的值;
(2)画出频率分布直方图;
(3)根据频率分布直方图估计这组数据的众数、中位数和平均数;
(4)根据上述图表,估计数据落在[10.95,11.35)范围内的可能性有百分之几?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.把110010(2)化为十进制数的结果是50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=|1-$\frac{1}{x}$|,若存在实数a,b(a<b),使得y=f(x)在[a,b]上的值域为[ma,mb],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,b=8,c=8$\sqrt{3}$,S△ABC=16$\sqrt{3}$,则∠A等于(  )
A.30°B.60°C.60° 或120°D.30° 或 150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)在线段EF上是否存在点M,使得平面MAB与平面FCB所成锐二面角的平面角为θ,且满足cosθ=$\frac{{\sqrt{5}}}{5}$?若不存在,请说明理由;若存在,求出FM的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\frac{π}{4}$<α<$\frac{π}{2}$,sin2α=$\frac{24}{25}$,则cosα-sinα=(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.±$\frac{1}{5}$D.±$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{{\begin{array}{l}{xlnx-2x,x>0}\\{{x^2}+\frac{3}{2}x,x≤0}\end{array}}$的图象上有且仅有四个不同的点关于直线y=-1的对称点在y=kx-1的图象上,则实数k的取值范围是(  )
A.$({\frac{1}{2},1})$B.$({\frac{1}{2},\frac{3}{4}})$C.$({\frac{1}{3},1})$D.$({\frac{1}{2},2})$

查看答案和解析>>

同步练习册答案