分析 (1)由余弦定理可得:a2=b2+c2-2bccos$\frac{π}{4}$,已知b2-a2=$\frac{1}{2}$c2.可得b=$\frac{3\sqrt{2}c}{4}$,a=$\frac{\sqrt{10}}{4}$c.利用余弦定理可得cosC.可得sinC=$\sqrt{1{-cos}^{2}C}$,即可得出tanC=$\frac{sinC}{cosC}$.
(2)由S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×$\frac{\sqrt{10}}{4}$c×$\frac{3\sqrt{2}}{4}$c×$\frac{2\sqrt{5}}{5}$=3,可得c,即可得出b,根据正弦定理求出外接圆的半径,从而求出其周长即可.
解答 解:(1)∵A=$\frac{π}{4}$,
∴由余弦定理可得:a2=b2+c2-2bccos$\frac{π}{4}$,
∴b2-a2=$\sqrt{2}$bc-c2,
又b2-a2=$\frac{1}{2}$c2.
∴$\sqrt{2}$bc-c2=$\frac{1}{2}$c2,
∴$\sqrt{2}$b=$\frac{3}{2}$c.可得b=$\frac{3\sqrt{2}}{4}$c,
∴a2=b2-$\frac{1}{2}$c2=$\frac{5}{8}$c2,
即a=$\frac{\sqrt{10}}{4}$c.
∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{\frac{5}{8}c}^{2}+{\frac{9}{8}c}^{2}{-c}^{2}}{2•\frac{\sqrt{10}}{4}c•\frac{3\sqrt{2}}{4}c}$=$\frac{\sqrt{5}}{5}$,
∵C∈(0,π),
∴sinC=$\sqrt{1{-cos}^{2}C}$=$\frac{2\sqrt{5}}{5}$.
∴tanC=$\frac{sinC}{cosC}$=2.
(2)∵S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×$\frac{\sqrt{10}}{4}$c×$\frac{3\sqrt{2}}{4}$c×$\frac{2\sqrt{5}}{5}$=3,
解得c=2$\sqrt{2}$.
∴b=$\frac{3\sqrt{2}}{4}$=3;
∵$\frac{a}{sinA}$=2R,
∴R=$\frac{a}{2sinA}$=$\frac{\frac{\sqrt{10}}{4}•2\sqrt{2}}{2sin\frac{π}{4}}$=$\frac{\sqrt{10}}{2}$,
∴△ABC的外接圆的周长是:$\sqrt{10}$π.
点评 本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,-1) | B. | ( 1,0) | C. | (1,-$\frac{π}{2}$) | D. | (1,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 45° | B. | 30° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com