分析 (1)方法一:采用切化弦思想.方法二:弦化切的思想.
(2)利用诱导公式和二倍角公式进行化解即可.
解答 解:(1)解法一:采用切化弦思想;
∵$\frac{sinα}{cosα}$=tanα=$\frac{1}{2}$,
∴2sinα=cosα,
又∵sin2α+cos2α=1,
解得:sin2α=$\frac{1}{5}$
则:sin2α+sinαcosα=sin2α+sinα•2sinα=3sin2α=$\frac{3}{5}$.
解法二:采用弦化切的思想:
∵tanα=$\frac{1}{2}$,
则:sin2α+sinαcosα=$\frac{si{n}^{2}α+sinαcosα}{1}=\frac{si{n}^{2}α+sinαcosα}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{ta{n}^{2}α+tanα}{ta{n}^{2}α+1}$=$\frac{(\frac{1}{2})^{2}+\frac{1}{2}}{(\frac{1}{2})^{2}+1}$=$\frac{3}{5}$.
(2)$\frac{1+sinx}{cosx}•\frac{sin2x}{{2{{cos}^2}(\frac{π}{4}-\frac{x}{2})}}$;
原式=$\frac{1+sinx}{cosx}•\frac{2sinxcosx}{cos2(\frac{π}{4}-\frac{x}{2})+1}$=$\frac{1+sinx}{cosx}•\frac{2sinxcosx}{sinx+1}=2sinx$.
点评 本题考查了采用切化弦和弦化切的思想以及诱导公式和二倍角公式进行化解计算的能力.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com