精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面,底面是梯形,

(1)求证:平面平面

(2)设为棱上一点,,试确定的值使得二面角

【答案】(1)详见解析;(2

【解析】

试题分析:(1)过,根据条件可证明平面平面,再由面面垂直的的判定即可得证;(2)根据条件可作出二面角的平面角,从而即可建立关于的方程,或建立空间直角坐标系,求得两个平面的法向量后亦可建立关于的方程,从而求解

试题解析:(1)平面平面平面

,在梯形中,过点作

中,,又在中,

平面平面平面平面

平面平面平面

平面平面平面;(2)法一:过点于点,过点于点,连,由(1)可知平面平面

平面是二面角的平面角,

,由(1)知,又

;法二:以为原点,所在直线为轴建立空间直角坐标系(如图)

,令,则

平面是平面的一个法向量,

设平面的法向量为,则 ,即

不妨令,得二面角

,解得 在棱上,,故为所求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业节能降耗技术改造后,在生产某产品过程中几录的产量x(吨)与相应的生产能耗y(吨)的几 组对应数据如表所示:

x

3

4

5

6

y

2.5

3

4

a

若根据表中数据得出y关于x的线性回归方程为 =0.7x+0.35,则表中a的值为(
A.3
B.3.15
C.3.5
D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,2),B(4,6), =t1 +t2 ,其中t1、t2为实数;
(1)若点M在第二或第三象限,且t1=2,求t2的取值范围;
(2)求证:当t1=1时,不论t2为何值,A、B、M三点共线;
(3)若t1=a2 ,且△ABM的面积为12,求a和t2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列各函数中,最小值等于2的函数是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作(其中元件1,2,3正常工作的概率都为 ),设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求证:CF∥平面A1DE;
(2)求二面角A1﹣DE﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数

I求函数上零点的个数;

II,若函数上是增函数.

求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,则异面直线AB1和BC1所成角的余弦值为(
A.0
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数 ,x∈[0,9]的值域为集合B,
(1)求A∩B;
(2)若C={x|3x<2m﹣1},且(A∩B)C,求实数m的取值范围.

查看答案和解析>>

同步练习册答案