精英家教网 > 高中数学 > 题目详情

【题目】已知为抛物线的焦点,过点的直线与抛物线相交于不同的两点,抛物线两点处的切线分别是,且相交于点,则的小值是___.

【答案】6

【解析】

设直线l的方程为:ykx+1A),B).联立化为:x24kx40,利用根与系数的关系可得|AB|k+4.对x24y两边求导可得:y,可得切线PA的方程为:yx),切线PB的方程为:yx),联立解得P点坐标,可得代入|PF|,利用导数研究函数的单调性极值即可得出.

设直线l的方程为:ykx+1A),B

联立,化为:x24kx40

可得:4k=﹣4

|AB|k+44k2+4

x24y两边求导可得:y

可得切线PA的方程为:yx

切线PB的方程为:yx),

联立解得:x)=2ky=﹣1.∴P2k,﹣1).

|PF|

|PF|

t2

|PF|tft),

f′(t)=1,当t>4, f′(t>0;t<4, f′(t<0

可得t4时,函数ft)取得极小值即最小值f4)=6.当且仅当k时取等号.

故答案为:6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了检验设备M与设备N的生产效率,研究人员作出统计,得到如下表所示的结果,则

设备M

设备N

生产出的合格产品

48

43

生产出的不合格产品

2

7

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

参考公式:,其中.

A. 有90%的把握认为生产的产品质量与设备的选择有关

B. 没有90%的把握认为生产的产品质量与设备的选择有关

C. 可以在犯错误的概率不超过0.01的前提下认为生产的产品质量与设备的选择有关

D. 不能在犯错误的概率不超过0.1的前提下认为生产的产品质量与设备的选择有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条异面直线,直线都垂直,则下列说法正确的是( )

A. 平面,则

B. 平面,则,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5浓度的数据如下表:

时间

周一

周二

周三

周四

周五

车流量x(万辆)

100

102

108

114

116

PM2.5的浓度y(微克/立方米)

78

80

84

88

90

1)根据上表数据,用最小二乘法,求出y关于x的线性回归方程x

2)若周六同一时间段车流量200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?

(参考公式:;参考数据:xi540yi420

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)ABC分割为面积相等的两部分,b的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六棱锥中,底面是正六边形,底面,给出下列四个命题:

①线段的长是点到线段的距离;

②异面直线所成角是

③线段的长是直线与平面的距离;

是二面角平面角.

其中所有真命题的序号是_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)求证:图2中,平面平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,马路南边有一小池塘,池塘岸40米,池塘的最远端的距离为400米,且池塘的边界为抛物线型,现要在池塘的周边建一个等腰梯形的环池塘小路,且均与小池塘岸线相切,记.

1)求小路的总长,用表示;

2)若在小路与小池塘之间(图中阴影区域)铺上草坪,求所需铺草坪面积最小时,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案