精英家教网 > 高中数学 > 题目详情

【题目】六棱锥中,底面是正六边形,底面,给出下列四个命题:

①线段的长是点到线段的距离;

②异面直线所成角是

③线段的长是直线与平面的距离;

是二面角平面角.

其中所有真命题的序号是_______________.

【答案】①④

【解析】

①连接进行分析即可得到结论;②注意判断是钝角还是锐角,由此得到结论;③根据与平面的位置关系求解出到平面的距离并与长度比较,由此得到结论;④利用线面垂直的判定定理,通过证明得到结论.

①连接如图所示:

因为底面是正六边形,所以

又因为底面,所以,所以平面

所以,故①正确;

②因为,所以异面直线所成角是或其补角,

,所以

所以,所以为钝角,

所以异面直线所成角是的补角,故错误;

③如图所示:

因为平面,所以平面

所以直线与平面的距离等于,故错误;

④连接,如下图所示,则

因为底面,所以

所以平面,所以

结合可知是二面角平面角,故正确.

故答案为:①④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ab为空间两条互相垂直的直线,等腰直角三角形的直角边所在直线与ab都垂直,斜边为旋转轴选择,有下列结论:

①当直线a60°角时,b30°角;

②当直线a60°角时,b60°角;

③直线a所成角的最小值为45°

④直线a所成角的最大值为60°

其中正确的是_______.(填写所以正确结论的编号).

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确专项附加扣除就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自201911日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:

40岁及以下

40岁以上

合计

基本满意

15

10

25

很满意

25

30

55

合计

40

40

80

1)根据列联表,能否有85%的把握认为满意程度与年龄有关?

2)若已经在满意程度为基本满意的职员中用分层抽样的方式选取了5名职员,现从这5名职员中随机选取3名进行面谈求面谈的职员中恰有2名年龄在40岁及以下的概率.

附:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C1ab0)的右焦点为FA20)是椭圆的右顶点,过F且垂直于x轴的直线交椭圆于PQ两点,且|PQ|3

1)求椭圆的方程;

2)过点A的直线l与椭圆交于另一点B,垂直于l的直线l与直线l交于点M,与y轴交于点N,若FBFN|MO||MA|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,过点的直线与抛物线相交于不同的两点,抛物线两点处的切线分别是,且相交于点,则的小值是___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)求证:图2中,平面平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)若平面平面,求的长;

(2)是否存在点,使直线与平面所成的角是?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

在其定义域上单调递减,求的取值范围;

存在两个不同极值点,且,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的离心率为,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y轴交于点P.

(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;

(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且AQ∥BM,求证:∠PFQ为定值.

查看答案和解析>>

同步练习册答案