【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.
(1)若平面平面,求的长;
(2)是否存在点,使直线与平面所成的角是?若存在,求出的值;若不存在,请说明理由.
【答案】(1)(2)
【解析】
(1)先平面与平面有公共点,得平面与平面相交,设交线为,根据平面平面得到,设,再得到,同理的得到,
根据即可求出结果;
(2) 以点为原点,分别以,,所在直线为轴建立空间直角坐标系,设,用表示出平面的法向量,根据直线与平面所成的角是,即可求出结果.
解:(1)证明:因为平面与平面有公共点,
所以平面与平面相交,设交线为,若平面平面,
因为平面平面,则.
设,又因为,所以,
同理,由平面平面,
因为平面平面,平面平面,
所以.
所以.因为,,,所以,
所以
(2)在图2中,以点为原点,分别以,,所在直线为轴建立空间直角坐标系,如下图所示.
易得,则,又,,,
所以,,,
设,则
则
设平面的法向量为,由它与,均垂直可得
,
令,可得,,
所以.
若存在点,使与平面所成的角是,
则,解得,因为,
所以,即
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足x2﹣5x+6<0.
(1)若a=1,且p∧q为真命题,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 100 | 102 | 108 | 114 | 116 |
PM2.5的浓度y(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根据上表数据,用最小二乘法,求出y关于x的线性回归方程x;
(2)若周六同一时间段车流量200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?
(参考公式:,;参考数据:xi=540,yi=420)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】六棱锥中,底面是正六边形,底面,给出下列四个命题:
①线段的长是点到线段的距离;
②异面直线与所成角是;
③线段的长是直线与平面的距离;
④是二面角平面角.
其中所有真命题的序号是_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.
(1)求证:图2中,平面平面;
(2)若平面平面,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,抛物线的焦点为F,过F的动直线l交于M、N两点.
(1)若l垂直于x轴,且线段MN的长为1,求的方程;
(2)若,求线段MN的中点P的轨迹方程;
(3)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,马路南边有一小池塘,池塘岸长40米,池塘的最远端到的距离为400米,且池塘的边界为抛物线型,现要在池塘的周边建一个等腰梯形的环池塘小路,且均与小池塘岸线相切,记.
(1)求小路的总长,用表示;
(2)若在小路与小池塘之间(图中阴影区域)铺上草坪,求所需铺草坪面积最小时,的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(t为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为.
(Ⅰ)求的普通方程和的直角坐标方程;
(Ⅱ)过曲线上任一点作与夹角为45°的直线,交于点,求的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形中,点是边的中点,将沿折起,使点到达点的位置,且
(1)求证; 平面平面;
(2)若平面和平面的交线为,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com