精英家教网 > 高中数学 > 题目详情

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)若平面平面,求的长;

(2)是否存在点,使直线与平面所成的角是?若存在,求出的值;若不存在,请说明理由.

【答案】(1)(2)

【解析】

(1)先平面与平面有公共点,得平面与平面相交,设交线为,根据平面平面得到,设,再得到,同理的得到

根据即可求出结果;

(2) 以点为原点,分别以所在直线为轴建立空间直角坐标系,设,用表示出平面的法向量,根据直线与平面所成的角是,即可求出结果.

解:(1)证明:因为平面与平面有公共点

所以平面与平面相交,设交线为,若平面平面

因为平面平面,则.

,又因为,所以

同理,由平面平面

因为平面平面,平面平面

所以.

所以.因为,所以

所以

(2)在图2中,以点为原点,分别以所在直线为轴建立空间直角坐标系,如下图所示.

易得,则,又

所以

,则

设平面的法向量为,由它与均垂直可得

,可得

所以.

若存在点,使与平面所成的角是

,解得,因为

所以,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5浓度的数据如下表:

时间

周一

周二

周三

周四

周五

车流量x(万辆)

100

102

108

114

116

PM2.5的浓度y(微克/立方米)

78

80

84

88

90

1)根据上表数据,用最小二乘法,求出y关于x的线性回归方程x

2)若周六同一时间段车流量200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?

(参考公式:;参考数据:xi540yi420

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六棱锥中,底面是正六边形,底面,给出下列四个命题:

①线段的长是点到线段的距离;

②异面直线所成角是

③线段的长是直线与平面的距离;

是二面角平面角.

其中所有真命题的序号是_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)求证:图2中,平面平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,抛物线的焦点为F,过F的动直线lMN两点.

1)若l垂直于x轴,且线段MN的长为1,求的方程;

(2)若,求线段MN的中点P的轨迹方程;

(3)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,马路南边有一小池塘,池塘岸40米,池塘的最远端的距离为400米,且池塘的边界为抛物线型,现要在池塘的周边建一个等腰梯形的环池塘小路,且均与小池塘岸线相切,记.

1)求小路的总长,用表示;

2)若在小路与小池塘之间(图中阴影区域)铺上草坪,求所需铺草坪面积最小时,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(t为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为

(Ⅰ)求的普通方程和的直角坐标方程;

(Ⅱ)过曲线上任一点作与夹角为45°的直线,交于点,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形中,边的中点,将沿折起,使点到达点的位置,且

(1)求证; 平面平面

(2)若平面和平面的交线为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案