【题目】已知椭圆C:的离心率为,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y轴交于点P.
(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;
(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且AQ∥BM,求证:∠PFQ为定值.
【答案】(Ⅰ)kAM∈(,0)(0,);(Ⅱ)见解析
【解析】
(Ⅰ)根据题意可得得c2=a2﹣2,由e,解得即可出椭圆的方程,再根据点在其内部,即可求得直线AM的斜率的取值范围,(Ⅱ)题意F(,0),M(x0,y0),可得直线AM的方程,求出点P的坐标,再根据直线平行,求出直线AQ的方程,求出Q的坐标,根据向量的数量积即可求出0,即可证明.
Ⅰ)由题意可得c2=a2﹣2,∵e,∴a=2,c,∴椭圆的方程为1,
设P(0,m),由点P在椭圆C的内部,得m,又∵A(﹣2,0),
∴直线AM的斜率kAM∈(,),又M为椭圆C上异于A,B的一点,
∴kAM∈(,0)(0,),
(Ⅱ)由题意F(,0),M(x0,y0),其中x0≠±2,则1,
直线AM的方程为y(x+2),令x=0,得点P的坐标为(0,),
∵kBM=kAQ,∴直线AQ的方程为y(x+2),
令x=0,得点Q的坐标为(0,),由(,),(,),
∴20,∴⊥,即∠PFQ=90°,
故∠PFQ为定值
科目:高中数学 来源: 题型:
【题目】六棱锥中,底面是正六边形,底面,给出下列四个命题:
①线段的长是点到线段的距离;
②异面直线与所成角是;
③线段的长是直线与平面的距离;
④是二面角平面角.
其中所有真命题的序号是_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(t为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为.
(Ⅰ)求的普通方程和的直角坐标方程;
(Ⅱ)过曲线上任一点作与夹角为45°的直线,交于点,求的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上下两个焦点分别为,过点与轴垂直的直线交椭圆于两点,的面积为,椭圆的长轴长是短轴长的倍.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线与轴交于点,与椭园交于两个不同的点,若存在实数,使得,求的取值范围,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和距离之和的最小值为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别是、,离心率,过点的直线交椭圆于、两点, 的周长为16.
(1)求椭圆的方程;
(2)已知为原点,圆: ()与椭圆交于、两点,点为椭圆上一动点,若直线、与轴分别交于、两点,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形中,点是边的中点,将沿折起,使点到达点的位置,且
(1)求证; 平面平面;
(2)若平面和平面的交线为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(常数),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为.
(1)若M与A重合,求曲线C的焦距.
(2)若,求的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com