【题目】已知椭圆
(常数
),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为
.
(1)若M与A重合,求曲线C的焦距.
(2)若
,求
的最大值与最小值.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y轴交于点P.
(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;
(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且AQ∥BM,求证:∠PFQ为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线C的参数方程为
(其中
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系中,直线
的极坐标方程为
.
(Ⅰ)求C的普通方程和直线
的倾斜角;
(Ⅱ)设点
(0,2),
和
交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标平面内,已知
,其中
为正整数,对于平面上任意一点
,记
为
关于
的对称点,
为
关于
的对称点,…
为
关于
的对称点.
(1)求向量
的坐标;
(2)对于任意偶数
,用
表示向量
的坐标;
(3)当点
在函数
图像上移动时,点
形成的是函数
的图像,其中
是以3为周期的周期函数,且当
时,
,求:函数
在
上的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乡镇政府为了解决农村教师的住房问题,计划征用一块土地盖一幢建筑总面积为10000
公寓楼(每层的建筑面积相同).已知士地的征用费为
,土地的征用面积为第一层的
倍,经工程技术人员核算,第一层建筑费用为
,以后每增高一层,其建筑费用就增加
,设这幢公寓楼高层数为n,总费用为
万元.(总费用为建筑费用和征地费用之和)
(1)若总费用不超过835万元,求这幢公寓楼最高有多少层数?
(2)试设计这幢公寓的楼层数,使总费用最少,并求出最少费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:“方程:
表示焦点在x轴上的双曲线”;命题q:“关于x的不等式x2+2ax+1≥0在R上恒成立”.
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:
气温 | 0 | 4 | 12 | 19 | 27 |
热奶茶销售杯数 | 150 | 132 | 130 | 104 | 94 |
(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程
(
精确到0.1),若某天的气温为15oC,预测这天热奶茶的销售杯数;
(Ⅱ)从表中的5天中任取一天,若已知所选取该天的热奶茶销售杯数大于120,求所选取该天热奶茶销售杯数大于130的概率.
参考数据:
,
.参考公式:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过焦点F的直线l与抛物线分别交于A、B两点,O为坐标原点,且
.
(1)求抛物线的标准方程;
(2)对于抛物线上任一点Q,点P(2t,0)都满足|PQ|≥2|t|,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com