精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标平面内,已知,其中为正整数,对于平面上任意一点,记关于的对称点,关于的对称点,…关于的对称点.

1)求向量的坐标;

2)对于任意偶数,用表示向量的坐标;

3)当点在函数图像上移动时,点形成的是函数的图像,其中是以3为周期的周期函数,且当时,,求:函数上的解析式.

【答案】1;(2;(3时,

【解析】

1)设,根据对称得到得到答案.

2)根据,代入数据计算得到答案.

3)先根据平移得到时,,再判断函数是以3为周期的周期函数,代入数据得到答案.

1)设,则满足:

满足:

2

3的图像由的图像向右平移个单位,向上平移个单位得到.

是以3为周期的周期函数,故是以3为周期的周期函数

时,,故时,

时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,马路南边有一小池塘,池塘岸40米,池塘的最远端的距离为400米,且池塘的边界为抛物线型,现要在池塘的周边建一个等腰梯形的环池塘小路,且均与小池塘岸线相切,记.

1)求小路的总长,用表示;

2)若在小路与小池塘之间(图中阴影区域)铺上草坪,求所需铺草坪面积最小时,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形中,边的中点,将沿折起,使点到达点的位置,且

(1)求证; 平面平面

(2)若平面和平面的交线为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间的零件,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:

(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?

甲工艺

乙工艺

总计

一等品

非一等品

总计

P(K2≥k)

0.1

0.05

0.01

k

2.706

3.841

6.635

附:,其中

(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(常数),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为.

1)若MA重合,求曲线C的焦距.

2)若,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:

是等边三角形 ③AB与平面BCD所成的角是ABCD所成角为,其中错误的结论个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意的,若数列同时满足下列两个条件,则称数列具有性质”.;②存在实数使得.

1)数列中,,判断是否具有性质”.

2)若各项为正数的等比数列的前项和为,且,证明:数列具有性质,并指出的取值范围.

3)若数列的通项公式,对于任意的,数列具有性质,且对满足条件的的最小值,求整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

同步练习册答案