精英家教网 > 高中数学 > 题目详情

【题目】有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:

气温oC)

0

4

12

19

27

热奶茶销售杯数

150

132

130

104

94

(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程精确到0.1),若某天的气温为15oC,预测这天热奶茶的销售杯数;

(Ⅱ)从表中的5天中任取一天,若已知所选取该天的热奶茶销售杯数大于120,求所选取该天热奶茶销售杯数大于130的概率.

参考数据:.参考公式:

【答案】(Ⅰ),预测热奶茶的销售杯数117.(Ⅱ)

【解析】

(Ⅰ)由表格中数据计算,求出回归系数,写出回归方程,利用方程计算x15的值;

(Ⅱ)根据条件概率的计算公式,求出所求的概率值.

解:(Ⅰ)由表格中数据可得,,.

.

∴热奶茶销售杯数关于气温的线性回归方程为.

∴当气温为15oC时,由回归方程可以预测热奶茶的销售杯数

(杯)

(Ⅱ)设表示事件“所选取该天的热奶茶销售杯数大于120”,表示事件“所选取该天的热奶茶销售杯数大于130”,则“已知所选取该天的热奶茶销售杯数大于120时,销售杯数大于130”应为事件.

∴已知所选取该天的热奶茶销售杯数大于120时,销售杯数大于130的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的上下两个焦点分别为,过点轴垂直的直线交椭圆两点,的面积为,椭圆的长轴长是短轴长的倍.

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线轴交于点,与椭园交于两个不同的点,若存在实数,使得,求的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(常数),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为.

1)若MA重合,求曲线C的焦距.

2)若,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意的,若数列同时满足下列两个条件,则称数列具有性质”.;②存在实数使得.

1)数列中,,判断是否具有性质”.

2)若各项为正数的等比数列的前项和为,且,证明:数列具有性质,并指出的取值范围.

3)若数列的通项公式,对于任意的,数列具有性质,且对满足条件的的最小值,求整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面ABCD是正方形,平面平面ABCD,平面平面ABCD

证明:平面ABCD

若二面角的大小为,求PB与平面PAD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,且底面中点,点上一点.

1)求证: 平面

2)求二面角 的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其图象上存在不同的两点,其坐标满足条件: 的最大值为0,则称为“柯西函数”,则下列函数:① :②:③:④.

其中为“柯西函数”的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

(1)若的充分条件,求的取值范围.

(2)若,求的取值范围.

查看答案和解析>>

同步练习册答案