【题目】在直角坐标系
中,曲线C的参数方程为
(其中
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系中,直线
的极坐标方程为
.
(Ⅰ)求C的普通方程和直线
的倾斜角;
(Ⅱ)设点
(0,2),
和
交于
两点,求
.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,抛物线
的焦点为F,过F的动直线l交
于M、N两点.
(1)若l垂直于x轴,且线段MN的长为1,求
的方程;
(2)若
,求线段MN的中点P的轨迹方程;
(3)求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的上下两个焦点分别为
,过点
与
轴垂直的直线交椭圆
于
两点,
的面积为
,椭圆
的长轴长是短轴长的
倍.
(1)求椭圆
的标准方程;
(2)已知
为坐标原点,直线
与
轴交于点
,与椭园
交于
两个不同的点,若存在实数
,使得
,求
的取值范围,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别是
、
,离心率
,过点
的直线交椭圆
于
、
两点,
的周长为16.
(1)求椭圆
的方程;
(2)已知
为原点,圆
:
(
)与椭圆
交于
、
两点,点
为椭圆
上一动点,若直线
、
与
轴分别交于
、
两点,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形
中,
点
是
边的中点,将
沿
折起,使点
到达点
的位置,且![]()
(1)求证; 平面
平面
;
(2)若平面
和平面
的交线为
,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高二年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(常数
),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为
.
(1)若M与A重合,求曲线C的焦距.
(2)若
,求
的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
在其图象上存在不同的两点
,
,其坐标满足条件:
的最大值为0,则称
为“柯西函数”,则下列函数:①
:②
:③
:④
.
其中为“柯西函数”的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com