精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
3
=1上有n个不同的点P1,P2,P3,…,Pn.设椭圆的右焦点为F,数列{|PnF|}是公差大于
1
1003
的等差数列,则n的最大值为(  )
分析:由题意,设Pn的横坐标为xn,则由椭圆定义有
|PnF|
|xn-4|
=
1
2
,从而可知1≤|PnF|≤3,利用数列{|PnF|}是公差大于
1
1003
的等差数列,可得3-1=(n-1)d>
n-1
1003
,从而n<2007,故n的最大值为2006.
解答:解:由题意,设Pn的横坐标为xn
则由椭圆定义有
|PnF|
|xn-4|
=
1
2

|PnF| =2-
1
2
x0

∵-2≤x0≤2
∴1≤|PnF|≤3
3-1=(n-1)d>
n-1
1003

∴n<2007
∴n的最大值为2006
故选B
点评:本题以椭圆为载体,考查椭圆的定义,考查椭圆与等差数列的联系,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x24
+y2=1
的左、右两个顶点分别为A,B,直线x=t(-2<t<2)与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2
(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;
(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+y2=1
,过E(1,0)作两条直线AB与CD分别交椭圆于A,B,C,D四点,已知kABkCD=-
1
4

(1)若AB的中点为M,CD的中点为N,求证:①kOMkON=-
1
4
为定值,并求出该定值;②直线MN过定点,并求出该定点;
(2)求四边形ACBD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+y2=1
,弦AB所在直线方程为:x+2y-2=0,现随机向椭圆内丢一粒豆子,则豆子落在图中阴影范围内的概率为
π-2
π-2

(椭圆的面积公式S=π•a•b,其中a是椭圆长半轴长,b是椭圆短半轴长)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区三模)已知椭圆
x2
4
+y2=1
的焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=90°,则点P的纵坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x24
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

同步练习册答案