精英家教网 > 高中数学 > 题目详情
如图,已知椭圆
x2
4
+y2=1
,弦AB所在直线方程为:x+2y-2=0,现随机向椭圆内丢一粒豆子,则豆子落在图中阴影范围内的概率为
π-2
π-2

(椭圆的面积公式S=π•a•b,其中a是椭圆长半轴长,b是椭圆短半轴长)
分析:先根据椭圆的面积公式S=π•a•b求出椭圆面积,然后利用四分之一个椭圆减去直角三角形的面积求出阴影部分面积,最后根据几何概型的概率公式解之即可.
解答:解:∵
x2
4
+y2=1

∴a=2,b=1则椭圆的面积S=π•a•b=2π,
∵图中阴影的面积为
S
4
-
1
2
×2×1
=
π
2
-1

∴豆子落在图中阴影范围内的概率为
π
2
-1
=
π-2

故答案为:
π-2
点评:本题主要考查了几何概型,以及椭圆的面积,同时考查了利用间接法求阴影部分面积,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x24
+y2=1
的焦点为F1、F2,点P为椭圆上任意一点,过F2作∠F1PF2的外角平分线的垂线,垂足为点Q,过点Q作y轴的垂线,垂足为N,线段QN的中点为M,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+
y2
4
3
=1
的弦PB过其中心O,点A是椭圆的右顶点,满足
PA
PB
=0
|
PB
|=2|
PA
|

(Ⅰ)求点P的坐标;
(Ⅱ)若椭圆上存在两点C、D(异于A、B两点),且(
PC
|
PC
|
+
PD
|
PD
|
)•
OA
=0
,问是否存在实数λ使得
AB
CD
,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)如图,已知椭圆
x2
4
+
y2
3
=1
的右焦点为F,过F的直线(非x轴)交椭圆于M、N两点,右准线l交x轴于点K,左顶点为A.
(1)求证:KF平分∠MKN;
(2)直线AM、AN分别交准线l于点P、Q,设直线MN的倾斜角为θ,试用θ表示线段PQ的长度|PQ|,并求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)如图,已知椭圆
x2
4
+
y2
3
=1
的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.
(Ⅰ)若点G的横坐标为-
1
4
,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.

查看答案和解析>>

同步练习册答案