精英家教网 > 高中数学 > 题目详情
(本题满分12分.)直线y=kx+b与椭圆交于A,B两点,记三角形ABO的面积为S
(1)求在k="0," 的条件下,S的最大值
(2)当,S=1时,求直线AB的方程
(1)设A(x1,b)B(x2,b)带入椭圆方程得x=±
所以S=

(2)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2)。
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在原点,为椭圆的左焦点, 为椭圆的一个顶点,过点作与垂直的直线轴于点, 且椭圆的长半轴长和短半轴长是关于的方程(其中为半焦距)的两个根.
(1)求椭圆的离心率;
(2)经过三点的圆与直线
相切,试求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,F1、F2分别是椭圆的左右焦点,M为椭圆上一点,MF2垂直于轴,椭圆下顶点和右顶点分别为A,B,且
(1)求椭圆的离心率;
(2)过F2作OM垂直的直线交椭圆于点P,Q,若,求椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分8分)求椭圆的长轴和短轴的长、离心率、焦点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设分别是椭圆的左、右焦点,过且斜率为的直线相交于两点,且成等差数列.
(1)若,求的值;
(2)若,设点满足,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
椭圆C:的两个焦点为,点在椭圆C上,且.
(1) 求椭圆C的方程;
(2) 若直线过圆的圆心,交椭圆C于两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点,长轴在轴上,离心率为,且上一点到的两焦点的距离之和为,则椭圆的方程为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆轴上,若焦距为4,则m等于  (   )
A.4B.5C.8D.14

查看答案和解析>>

同步练习册答案