精英家教网 > 高中数学 > 题目详情
(本题满分14分)设分别是椭圆的左、右焦点,过且斜率为的直线相交于两点,且成等差数列.
(1)若,求的值;
(2)若,设点满足,求椭圆的方程.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直线过椭圆的右焦点,抛物线:的焦点为椭圆的上顶点,且直线交椭圆两点,点 在直线上的射影依次为点
(1)求椭圆的方程;
(2)若直线ly轴于点,且,当变化时,探求的值是否为定值?若是,求出的值,否则,说明理由;
(3)连接,试探索当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)已知m>1,直线,椭圆分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,的重心分别为.若原点在以线段为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的左、右顶点分别为,曲线是以椭圆中心为顶点,为焦点的抛物线.
(1)求曲线的方程;
(2)直线与曲线交于不同的两点.当时,求直线 的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分.)直线y=kx+b与椭圆交于A,B两点,记三角形ABO的面积为S
(1)求在k="0," 的条件下,S的最大值
(2)当,S=1时,求直线AB的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点分别为,如果椭圆上存在点,使得·,则椭圆离心率的取值范围是( )
A.(]B. [)C. (]D.[)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距等于2 ,则的值为                     (   )
A.5或3B.5C.8D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

人造地球卫星的运行轨道是以地心为一个焦点的椭圆,设地球半径为R、卫星近地点、远地点离地面的距离分别为,则卫星轨道的离心率为                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线  在y轴上的截距为m(m≠0),直线交椭圆于A、B两个不同点。
(1)求椭圆的方程;
(2)求m的取值范围;

查看答案和解析>>

同步练习册答案