【题目】在底面是正三角形、侧棱垂直于底面的三棱柱ABC﹣A1B1C1中,底面边长为a,侧棱长为2a,点M是A1B1的中点.
(1)证明:MC1⊥AB1.
(2)求直线AC1与侧面BB1C1C所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其短轴的两个端点与长轴的一个端点构成的三角形的面积为.
(1)求椭圆的标准方程;
(2)直线与圆相切,并与椭圆交于不同的两点和,若为坐标原点),求线段长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学分别做下面这道题目:在平面直角坐标系中,动点到的距离比到轴的距离大,求的轨迹.甲同学的解法是:解:设的坐标是,则根据题意可知
,化简得; ①当时,方程可变为;②这表示的是端点在原点、方向为轴正方向的射线,且不包括原点; ③当时,方程可变为; ④这表示以为焦点,以直线为准线的抛物线;⑤所以的轨迹为端点在原点、方向为轴正方向的射线,且不包括原点和以为焦点,以直线为准线的抛物线. 乙同学的解法是:解:因为动点到的距离比到轴的距离大. ①如图,过点作轴的垂线,垂足为. 则.设直线与直线的交点为,则; ②即动点到直线的距离比到轴的距离大; ③所以动点到的距离与到直线的距离相等;④所以动点的轨迹是以为焦点,以直线为准线的抛物线; ⑤甲、乙两位同学中解答错误的是________(填“甲”或者“乙”),他的解答过程是从_____处开始出错的(请在横线上填写① 、②、③、④ 或⑤ ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若.则a,b中至少有一个不小于1”的逆命题是一个真命题
B.命题“负数的平方是正数”是特称命题
C.命题“设a,,若,则或”是一个真命题
D.常数数列既是等差数列也是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线的焦点F为圆C:的圆心.
求抛物线的方程与其准线方程;
直线l与圆C相切,交抛物线于A,B两点;
若线段AB中点的纵坐标为,求直线l的方程;
求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆:的左、右焦点分别为,轴,直线交轴于点,,为椭圆上的动点,的面积的最大值为1.
(1)求椭圆的方程;
(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com