【题目】(本小题满分14分)如图,四棱锥
的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD, PB=PD,
⊥
,
⊥
,
,
分别是
,
的中点,连结
.求证:
![]()
(1)
∥平面
;
(2)
⊥平面
.
【答案】(1)详见解析(2)详见解析
【解析】
试题分析:(1)证明线面平行,关键证明线线平行,这可根据三角形中位线性质得到:在△
中,因为
,
分别是
,
的中点,所以
∥
.再根据线面平行判定定理进行证明(2)证明线面垂直,需多次利用线线垂直与线面垂直相互转化:先根据面面垂直性质定理转化为线面垂直:由平面PBD⊥平面ABCD,得
⊥平面
.从而
⊥
.又因为
⊥
,所以可得
⊥平面
.从而
⊥
.又因为
⊥
,
∥
,所以
⊥
.从而可证
⊥平面
.
试题解析:证明:(1)连结AC,
因为ABCD 是平行四边形,所以O为
的中点. 2分
在△
中,因为
,
分别是
,
的中点,
所以
∥
. 4分
因为
平面
,
平面
,
所以
∥平面
. 6分
(2)连结
.因为
是
的中点,PB=PD,
![]()
所以PO⊥BD.
又因为平面PBD⊥平面ABCD,平面![]()
平
面
=
,![]()
平面![]()
所以
⊥平面
.
从而
⊥
. 8分
又因为
⊥
,
,
平面
,
平面
,
所以
⊥平面
.
因为
平面
,所以
⊥
. 10分
因为
⊥
,
∥
,所以
⊥
. 12分
又因为
平面
,
平面
,
,
所以
⊥平面
. 14分
科目:高中数学 来源: 题型:
【题目】下列结论中正确的个数有( )
(1)数列{an},{bn}都是等差数列,则数列{an+bn}也一定是等差数列;
(2)数列{an},{bn}都是等比数列,则数列{an+bn}也一定是等比数列;
(3)等差数列{an}的首项为a1 , 公差为d,取出数列中的所有奇数项,组成一个新的数列,一定还是等差数列;
(4) G为a,b的等比中项G2=ab.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分为14分)已知定义域为R的函数
是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分为14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
![]()
(1)求证:DE⊥平面BCD;
(2)在图2中,若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥BDEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)的焦点为F,直线y=x﹣8与此抛物线交于A、B两点,与x轴交于点C,O为坐标原点,若
=3
.
(1)求此抛物线的方程;
(2)求证:OA⊥OB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点,焦点在x轴上的椭圆,离心率为
且过点(
,0),过定点C(﹣1,0)的动直线与该椭圆相交于A、B两点.
(1)若线段AB中点的横坐标是﹣
,求直线AB的方程;
(2)在x轴上是否存在点M,使
为常数?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于三角形满足的条件,下列判断正确的是( )
A.a=7,b=14,A=30°,有两解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有两解
D.b=9,c=10,B=60°,无解
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com