精英家教网 > 高中数学 > 题目详情

【题目】本小题满分为14如图1所示,在RtABC中,AC=6,BC=3,ABC=90°,CD为ACB的平分线,点E在线段AC上,CE=4.如图2所示,将BCD沿CD折起,使得平面BCD平面ACD,连结AB,设点F是AB的中点.

1求证:DE平面BCD;

2在图2中,若EF平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥BDEG的体积.

【答案】1详见解析2

【解析】

试题分析:1折叠问题需注意折叠前后垂直关系不变的量:折叠前根据平几知识可计算出有DECD.折叠后仍有DECD.再由面面垂直性质定理可得DE平面BCD.2求三棱锥体积关键在于确定高,即线面垂直.这仍可由面面垂直性质定理得到:因为平面BCD平面ACD,过点B作BHCD交于点H 则有BH平面ACD.由线面平行可推导出线线平行,从而确定G的位置,这样就可计算底面积,最后根据三棱锥体积公式求体积

试题解析:1证明:在题图1中,因为AC=6,BC=3,ABC=90°,

所以ACB=60°.

因为CD为ACB的平分线,所以BCD=ACD=30°,

所以CD=2.

又因为CE=4,DCE=30°,所以DE=2.则CD2+DE2=CE2

所以CDE=90°,即DECD.

在题图2中,因为平面BCD平面ACD,平面BCD∩平面ACD=CD,DE平面ACD,所以DE平面BCD.

2在题图2中,因为EF平面BDG,EF平面ABC,

平面ABC∩平面BDG=BG,所以EFBG.

因为点E在线段AC上,CE=4,点F是AB的中点,

所以AE=EG=CG=2.

过点B作BHCD交于点H.因为平面BCD平面ACD,BH平面BCD,

所以BH平面ACD.

由条件得BH=.又SDEGSACD×AC·CD·sin 30°=

所以三棱锥BDEG的体积为V=SDEG·BH=××.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知直四棱柱ABCD﹣A1B1C1D1的底面ABCD为菱形,且∠BCD=60°,P为AD1的中点,Q为BC的中点

(1)求证:PQ∥平面D1DCC1
(2)求证:DQ⊥平面B1BCC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制造厂商10月份生产了一批乒乓球,从中随机抽取n个进行检查,测得每个球的直径(单位:mm),将数据进行分组,得到如表频率分布表:

分组

频数

频率

[39.95,39.97)

6

P1

[39.97,39.99)

12

0.20

[39.99,40.01)

a

0.50

[40.01,40.03)

b

P2

合计

n

1.00


(1)求a、b、n及P1、P2的值,并画出频率分布直方图(结果保留两位小数);

(2)已知标准乒乓球的直径为40.00mm,直径误差不超过0.01mm的为五星乒乓球,若这批乒乓球共有10000个,试估计其中五星乒乓球的数目;
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表,估计这批乒乓球直径的平均值和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:y=2x+m与圆O:x2+y2=1相交于A,B两个不同的点,且A(cosα,sinα),B(cosβ,sinβ).
(1)当△AOB面积最大时,求m的取值,并求出|AB|的长度.
(2)判断sin(α+β)是否为定值;若是,求出定值的大小;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 =1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线的两条渐近线交于B、C两点,过B、C分别作AC、AB的垂线,两垂线交于点D.若D到直线BC的距离小于2(a+ ),则该双曲线的离心率的取值范围是( )
A.(1,2)
B.( ,2)
C.(1,
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知数列)满足其中

1)当时,求关于的表达式,并求的取值范围;

2)设集合

,求证:

是否存在实数,使都属于?若存在,请求出实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD平面 ABCD, PB=PD,分别是的中点,连结.求证:

(1)平面

(2)平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足an+2SnSn1=0(n≥2),a1=
(1)求证:{ }是等差数列;
(2)求an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: 是同一平面内的三个向量,其中 =(1,2)
(1)若| |=2 ,且 ,求 的坐标;
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ.

查看答案和解析>>

同步练习册答案