【题目】(本小题满分16分)已知数列(, )满足, 其中, .
(1)当时,求关于的表达式,并求的取值范围;
(2)设集合.
①若, ,求证: ;
②是否存在实数, ,使, , 都属于?若存在,请求出实数, ;若不存在,请说明理由.
【答案】(1), (2)①详见解析,②不存在
【解析】试题分析:(1)数列递推关系式是一个分段函数,可通过分段点进行连接: , , ,根据对勾函数得,或,从而有(2)①当时,数列是一个等差数列,易得,从而,令,得.问题转化为证明有满足条件解,易求得②∴ ,问题转化为是否存在三个不同的整数(),使得消去a,d得,由于,所以无解
试题解析:(1)当时,
, , . 2分
因为, ,或,
所以. 4分
(2)①由题意, , . 6分
令,得.
因为, ,
所以令,则. 8分
②不存在实数, ,使, , 同时属于. 9分
假设存在实数, ,使, , 同时属于.
,∴,
从而. 11分
因为, , 同时属于,所以存在三个不同的整数(),
使得从而
则. 13分
因为与互质,且与为整数,
所以,但,矛盾.
所以不存在实数, ,使, , 都属于. 16分
科目:高中数学 来源: 题型:
【题目】一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( )
A.
B.4 π
C.12π
D. π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正四棱锥S﹣ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分为14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)在图2中,若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥BDEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b﹣1(a≠0).
(1)当a=1,b=﹣2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+ 对称,求b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点,焦点在x轴上的椭圆,离心率为 且过点( ,0),过定点C(﹣1,0)的动直线与该椭圆相交于A、B两点.
(1)若线段AB中点的横坐标是﹣ ,求直线AB的方程;
(2)在x轴上是否存在点M,使 为常数?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).
(1)求关于的函数关系式;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1 , D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.
(I)在图中画出这个正方形(不必说明画法和理由);
(II)求直线AF与平面α所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com