精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为m),三块种植植物的矩形区域的总面积为m2).

1)求关于的函数关系式;

2)求的最大值.

【答案】(1

2)当矩形温室的室内长为60 m时,三块种植植物的矩形区域的总面积最大,最大为m2

【解析】试题分析:(1)建立实际问题函数解析式,关键读懂题意即可,本题题意明确,图形简单,三块种植植物的矩形区域的总面积可看做一个矩形面积: ,根据边长为正得其定义域为

2)这是一个积为定值的函数,可根据基本不等式求最值: 当且仅当时等号成立.

试题解析:(1)由题设,得

6

2)因为,所以8

当且仅当时等号成立. 10

从而12

答:当矩形温室的室内长为60 m时,三块种植植物的矩形区域的总面积最大,最大为m214

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数据x1 , x2 , x3 , …,x100是杭州市100个普通职工的2016年10月份的收入(均不超过2万元),设这100个数据的中位数为x,平均数为y,方差为z,如果再加上马云2016年10月份的收入x101(约100亿元),则相对于x、y、z,这101个月收入数据(
A.平均数可能不变,中位数可能不变,方差可能不变
B.平均数大大增大,中位数可能不变,方差也不变
C.平均数大大增大,中位数一定变大,方差可能不变
D.平均数大大增大,中位数可能不变,方差变大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知数列)满足其中

1)当时,求关于的表达式,并求的取值范围;

2)设集合

,求证:

是否存在实数,使都属于?若存在,请求出实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出x万元与销售额y万元之间有如下的对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为12万元时,销售收入y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足an+2SnSn1=0(n≥2),a1=
(1)求证:{ }是等差数列;
(2)求an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为
(注:方差 ,其中 为x1 , x2 , …,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.

(1)是否存在实数,使数列是等比数列?若存在,求的值;若不存在,请说明理由;

(2)若是数列的前项和,求满足的所有正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,D,E分别是BC,AB的中点,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P﹣BC﹣A的平面角为γ,则α,β,γ的大小关系是(
A.α<β<γ
B.α<γ<β
C.β<α<γ
D.γ<β<α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足ACBC,BC=2AC

(1)求椭圆的离心率;

(2)若y轴被ABC的外接圆所截得弦长为9,求椭圆方程。

查看答案和解析>>

同步练习册答案