分析 作SO⊥底面ABC,垂足为O,取AB中点D,BC中点E,以O为原点,OD为x轴,OE为y轴,OS为z轴,建立空间直角坐标系,利用向量法能求出邻两侧面所成的二面角的余弦值.
解答
解:如图,正三棱锥S-ABC中,作SO⊥底面ABC,垂足为O,
取AB中点D,BC中点E,连结CD、SD、OE,则O∈CD,
∵正三棱锥的侧面与底面所成的二面角的余弦值为$\frac{\sqrt{3}}{3}$,
∴cos$∠SDO=\frac{OD}{SD}$=$\frac{\sqrt{3}}{3}$,
设OD=$\sqrt{3}$,则SD=3,CD=3$\sqrt{3}$,AB=6,SA=3$\sqrt{2}$,PO=$\sqrt{6}$,
以O为原点,OD为x轴,OE为y轴,OS为z轴,建立空间直角坐标系,
则S(0,0,$\sqrt{6}$),A($\sqrt{3}$,-3,0),B($\sqrt{3}$,3,0),C(-2$\sqrt{3}$,0,0),
$\overrightarrow{SA}$=($\sqrt{3},-3,-\sqrt{6}$),$\overrightarrow{SB}$=($\sqrt{3},3,-\sqrt{6}$),$\overrightarrow{SC}$=(-2$\sqrt{3}$,0,-$\sqrt{6}$),
设平面SAB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SA}=\sqrt{3}x-3y-\sqrt{6}z=0}\\{\overrightarrow{n}•\overrightarrow{SB}=\sqrt{3}x+3y-\sqrt{6}z=0}\end{array}\right.$,取x=$\sqrt{2}$,得$\overrightarrow{n}$=($\sqrt{2}$,0,1),
设平面SAC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{SA}=\sqrt{3}a-3b-\sqrt{6}c=0}\\{\overrightarrow{m}•\overrightarrow{SC}=-2\sqrt{3}a-\sqrt{6}c=0}\end{array}\right.$,取a=$\sqrt{2}$,得$\overrightarrow{m}$=($\sqrt{2}$,-$\frac{\sqrt{6}}{3}$,-2),
∵$\overrightarrow{m}•\overrightarrow{n}$=2+0-2=0,
∴相邻两侧面垂直,
∴相邻两侧面所成的二面角的余弦值是0.
故答案为:0.
点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | π | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-$\frac{3}{2}$<x<2} | B. | {x|-2<x<$\frac{3}{2}$} | C. | {x|x<-$\frac{3}{2}$或x>2} | D. | {x|x<-2或x>$\frac{3}{2}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com