精英家教网 > 高中数学 > 题目详情

在一个盒子里装有4枝圆珠笔,其中3枝一等品,1枝三等品
(1)从盒子里任取2枝恰有1枝三等品的概率多大?
(2)从盒子里第一次任取1枝(不放回),第二次任取1枝;第一次取的是三等品,第二次取的是一等品的概率有多大?

(1);(2)

解析试题分析:(1)列举出“从盒子里任取2枝”所对应的的所有的可能的情况一共6种,在这6中里面找到符合“恰有1枝是三等品”的情况一共3种,用“恰有1枝是三等品”的情况数÷总的情况数即是所求的概率;(2)这是条件概率,可由条件概率的方法来作答,也可利用列举的方法,先列举出所有的“第一次任取1枝(不放回),第二次任取1枝”的情况数,然后在这些情况中找到符合“第一次取的是三等品,第二次取的是一等品”的情况数,用后者÷前者即是所求的概率
试题解析:(1)设三枝一等品为,一枝三等品为,         1分
则“任取2枝”共有,一共种         4分
“恰有一枝三等品”共有,一共种            5分
所以“从盒子里任取枝恰有枝三等品”的概率是         6分
(2)“从盒子里第一次任取1枝(不放回),第二次任取1枝”,有,一共12种,  10分
其中“第一次取的是三等品,第二次取的是一等品”有,一共3种,       11分
所以“第一次取的是三等品,第二次取的是一等品”的概率是         12分
考点:1离散型随机变量及其应用;2随机事件的概率;3条件概率及其应用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在一个花瓶中装有6枝鲜花,其中3枝山茶花,2枝杜鹃花和1枝君子兰,从中任取2枝鲜花.
(1)求恰有一枝山茶花的概率;
(2)求没有君子兰的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校举行演讲比赛,高二(12)班有4名男同学和3名女同学都很想参加这次活动,现从中选一名男同学和一名女同学代表本班参赛,求女同学甲参赛的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ)分别求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)写出数量积X的所有可能取值,并求X分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某旅游推介活动晚会进行嘉宾现场抽奖活动,抽奖规则是:抽奖盒中装有个大小相同的小球,分别印有“多彩十艺节”和“美丽泉城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球,若抽到两个球都印有“多彩十艺节”标志即可获奖.
(I)活动开始后,一位参加者问:盒中有几个“多彩十艺节”球?主持人笑说:我只知道从盒中同时抽两球不都是“美丽泉城行”标志的概率是,求抽奖者获奖的概率;
(Ⅱ)上面条件下,现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校为了使运动员顺利参加运动会,招募了8名男志愿者和12名女志愿者,这20名志愿者的身高如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.


 

 
 
8
16
5
8
9
 
 
8
7
6
17
2
3
5
5
6
7
4
2
18
0
1
2
 
 
 
 
1
19
0
 
 
 
 
(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有1人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中随机选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部人中随机抽取人为优秀的概率为.

 
优秀
非优秀
合计
甲班

 
 
乙班
 

 
合计
 
 

(1)请完成上面的列联表;
(2)根据列联表的数据,能否有的把握认为成绩与班级有关系?
(3)在甲、乙两个理科班优秀的学生中随机抽取两名学生,用表示抽得甲班的学生人数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个袋子里装有7个球,其中有红球4个, 编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中, 含有编号为3的球的概率;
(Ⅱ)在取出的4个球中, 红球编号的最大值设为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:

一次购物量(件)
1≤n≤3
4≤n≤6
7≤n≤9
10≤n≤12
n≥13
顾客数(人)

20
10
5

结算时间(分钟/人)
0.5
1
1.5
2
2.5
已知这50位顾客中一次购物量少于10件的顾客占80%.
(1)确定的值;
(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.

查看答案和解析>>

同步练习册答案