在一个盒子里装有4枝圆珠笔,其中3枝一等品,1枝三等品
(1)从盒子里任取2枝恰有1枝三等品的概率多大?
(2)从盒子里第一次任取1枝(不放回),第二次任取1枝;第一次取的是三等品,第二次取的是一等品的概率有多大?
(1);(2)
解析试题分析:(1)列举出“从盒子里任取2枝”所对应的的所有的可能的情况一共6种,在这6中里面找到符合“恰有1枝是三等品”的情况一共3种,用“恰有1枝是三等品”的情况数÷总的情况数即是所求的概率;(2)这是条件概率,可由条件概率的方法来作答,也可利用列举的方法,先列举出所有的“第一次任取1枝(不放回),第二次任取1枝”的情况数,然后在这些情况中找到符合“第一次取的是三等品,第二次取的是一等品”的情况数,用后者÷前者即是所求的概率
试题解析:(1)设三枝一等品为,一枝三等品为, 1分
则“任取2枝”共有,一共种 4分
“恰有一枝三等品”共有,一共种 5分
所以“从盒子里任取枝恰有枝三等品”的概率是 6分
(2)“从盒子里第一次任取1枝(不放回),第二次任取1枝”,有,一共12种, 10分
其中“第一次取的是三等品,第二次取的是一等品”有,一共3种, 11分
所以“第一次取的是三等品,第二次取的是一等品”的概率是 12分
考点:1离散型随机变量及其应用;2随机事件的概率;3条件概率及其应用
科目:高中数学 来源: 题型:解答题
学校举行演讲比赛,高二(12)班有4名男同学和3名女同学都很想参加这次活动,现从中选一名男同学和一名女同学代表本班参赛,求女同学甲参赛的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.
(Ⅰ)分别求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)写出数量积X的所有可能取值,并求X分布列与数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某旅游推介活动晚会进行嘉宾现场抽奖活动,抽奖规则是:抽奖盒中装有个大小相同的小球,分别印有“多彩十艺节”和“美丽泉城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球,若抽到两个球都印有“多彩十艺节”标志即可获奖.
(I)活动开始后,一位参加者问:盒中有几个“多彩十艺节”球?主持人笑说:我只知道从盒中同时抽两球不都是“美丽泉城行”标志的概率是,求抽奖者获奖的概率;
(Ⅱ)上面条件下,现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校为了使运动员顺利参加运动会,招募了8名男志愿者和12名女志愿者,这20名志愿者的身高如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
男 | | 女 | ||||||
| | 8 | 16 | 5 | 8 | 9 | | |
8 | 7 | 6 | 17 | 2 | 3 | 5 | 5 | 6 |
7 | 4 | 2 | 18 | 0 | 1 | 2 | | |
| | 1 | 19 | 0 | | | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部人中随机抽取人为优秀的概率为.
| 优秀 | 非优秀 | 合计 |
甲班 | | | |
乙班 | | | |
合计 | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个袋子里装有7个球,其中有红球4个, 编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中, 含有编号为3的球的概率;
(Ⅱ)在取出的4个球中, 红球编号的最大值设为X,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量(件) | 1≤n≤3 | 4≤n≤6 | 7≤n≤9 | 10≤n≤12 | n≥13 |
顾客数(人) | 20 | 10 | 5 | ||
结算时间(分钟/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com