精英家教网 > 高中数学 > 题目详情

小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ)分别求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)写出数量积X的所有可能取值,并求X分布列与数学期望

(Ⅰ)小波去下棋的概率为 ,小波不去唱歌的概率.(Ⅱ)的所有可能取值为

解析试题分析:(Ⅰ)的所有可能取值,即从这六个向量中任取两个,共有种,的所有可能取值为,利用古典概型概率计算公式求解;(Ⅱ)由上表可知的所有可能取值为;数量积为-2的只有一种,数量积为-1的有六种,数量积为0的有四种,数量积为1的有四种,列出分布列,求期望.
试题解析:(Ⅰ)的所有可能取值,即从这六个向量中任取两个,共有种。                              1分
而对取出两个向量的数量积进行计算,得到的所有可能取值为;   3分
求小波去下棋的概率,这显然是古典概型,只需找出总的事件数有种,因为就去下棋,只需在下表计算结果中,找出小于零的次数为,                      4分
有古典概型的概率求法知:小波去下棋的概率为 ,                   5分
小波不去唱歌的概率,它的对立事件为,去唱歌,而就去唱歌,
在下表中,共有四次,故去唱歌的概率为,
由对立事件的概率求法知:小波不去唱歌的概率.                 6分









 



-1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)用X表示前4局中乙当裁判的次数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:

根据上表:
(Ⅰ)求数学辅导讲座在周一、周三、周五都不满座的概率;
(Ⅱ)设周三各辅导讲座满座的科目数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲乙两人拿两颗骰子做投掷游戏,规则如下:若掷出的点数之和为3的倍数,原掷骰子的人再继续掷,否则,由对方接着掷。第一次由甲开始掷。
(1)分别求第二次、第三次由甲掷的概率;
(2)求前4次抛掷中甲恰好掷两次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:

 
科目甲
科目乙
总计
第一小组
1
5
6
第二小组
2
4
6
总计
3
9
12
现从第一小组、第二小组中各任选2人分析选课情况.
(1)求选出的4人均选科目乙的概率;
(2)设为选出的4个人中选科目甲的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一个盒子里装有4枝圆珠笔,其中3枝一等品,1枝三等品
(1)从盒子里任取2枝恰有1枝三等品的概率多大?
(2)从盒子里第一次任取1枝(不放回),第二次任取1枝;第一次取的是三等品,第二次取的是一等品的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:

付款方式
分1期
分2期
分3期
分4期
分5期
频数
40
20

10

已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元.用表示经销一辆汽车的利润.
(1)求上表中的值;
(2)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率;(3)求的分布列及数学期望.

查看答案和解析>>

同步练习册答案