精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,若双曲线的渐近线方程是y=±2x,且经过点(
2
,2),则该双曲线的方程是
 
考点:双曲线的标准方程
专题:圆锥曲线的定义、性质与方程
分析:设双曲线方程为x2-
y2
4
(λ≠0),把点(
2
,2)代入,能求出双曲线方程.
解答: 解:∵双曲线的渐近线方程是y=±2x,
∴设双曲线方程为x2-
y2
4
(λ≠0),
∵双曲线经过点(
2
,2),
∴2-
4
4
=λ,解得λ=1,
∴双曲线方程为x2-
y2
4
=1

故答案为:x2-
y2
4
=1
点评:本题考查双曲线方程的求法,是基础题,解题时要认真审题,注意双曲线性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l:
3
x-y-
3
=0,圆C:(x-3)2+y2=4,直线l与圆C交于A,B两点,则
AB
AC
等于(  )
A、2
B、3
C、4
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若函数f(x)为定义域D上的单调函数,且存在区间(m,n)⊆D(m<n),使得当x∈(m,n)时,f(x)的取值范围恰为(m,n),则称函数f(x)是D上的“正函数”. 已知函数f (x)=ax(a>1)为R上的“正函数”,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=loga(x+3)-1(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则
1
m
+
1
n
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn,Tn分别是等差数列{an},{bn}的前n项和,若
Sn
Tn
=
n
2n+1
(n∈N*),则
a5
b6
=(  )
A、
5
13
B、
9
19
C、
11
23
D、
9
23

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,其前n项和为Sn,若S4=10,S13=91.
(1)求Sn
(2)若数列{Mn}满足条件:M1=St1,当n≥2时,Mn=Stn-Stn-1,其中数列{tn}单调递增,且t1=1,tn∈N*
①试找出一组t2,t3,使得M22=M1•M3
②证明:对于数列{an},一定存在数列{tn},使得数列{Mn}中的各数均为一个整数的平方.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(-2,4)作圆(x-2)2+(y-1)2=25的切线l,若l与l1:ax+3y+2a=0平行,则l1与l之间的距离为(  )
A、
28
5
B、
12
5
C、
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

“k2=1”是“k=-1”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y,满足
1
x
+
3
y
+2=3,则3x+y最小值
 

查看答案和解析>>

同步练习册答案