精英家教网 > 高中数学 > 题目详情
9.直线$\sqrt{3}$x-y+2014=0的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由直线方程求出直线的斜率,再由斜率等于倾斜角的正切值求得直线的倾斜角.

解答 解:由直线$\sqrt{3}$x-y+2014=0可知,该直线的斜率为$\sqrt{3}$,
设其倾斜角为α(0≤α<π),则tan$α=\sqrt{3}$,
∴$α=\frac{π}{3}$.
故选:B.

点评 本题考查直线的倾斜角,考查了直线的倾斜角与斜率的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3)
(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等差数列{an}的前n项和为Sn=$\frac{n}{2}$(3n+5),正项等比数列{bn}中,b2=4,b1b7=256.
(Ⅰ)求{an}与{bn}的通项公式;
(Ⅱ)设cn=anbn,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若二项式(2x-$\frac{a}{x}$)7的展开式中$\frac{1}{{x}^{3}}$的系数是84,则实数a=(  )
A.-2B.-$\root{5}{4}$C.-1D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$表示焦点在y轴上的椭圆;命题q:双曲线$\frac{y^2}{5}-\frac{x^2}{m}=1$的离心率e∈(1,2),若命题“p∨q为真,命题“p∧q”为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在底面是菱形的四棱锥P-ABCD中,PA⊥底面ABCD,∠ABC=60°,PA=AB=2,E是PD中点.
(1)求证:PB∥平面ACE;
(3)求二面角P-BC-A的大小;
(2)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(1,0)和圆B:(x+1)2+y2=64,P是圆上任一点,求线段AP的垂直平分线l与线段PB的交点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则$f(\frac{π}{3})$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设抛物线y2=16x的焦点为F,准线为l,P为抛物线上一点,PA和l垂直,A为垂足,如果直线AF的斜率为$-\sqrt{3}$,则|PF|=(  )
A.16B.8C.$8\sqrt{3}$D.$16\sqrt{3}$

查看答案和解析>>

同步练习册答案