分析 (1)要证PB∥平面ACE,只需证明PB与平面ACE内的一条直线平行即可,连接BD交AC于O,则O为AC的中点,从而OE为三角形PBD的中位线,易知EO∥PB,从而得证;
(2)取BC中点H,连结AH,PH,则AH⊥BC,PH⊥BC,∠PHA是二面角P-BC-A的平面角,由此能求出二面角P-BC-A的大小.
(3)作EF⊥AD,则EF为三棱锥E-ACD的高,从而可求体积.
解答 证明:(1)连接BD交AC于O,∵ABCD为菱形,则BO=OD,![]()
连接EO,则EO∥PB
∵EO?平面ACE,PB?平面ACE,
∴PB∥平面ACE;
解:(2)取BC中点H,连结AH,PH,
∵在底面是菱形的四棱锥P-ABCD中,PA⊥底面ABCD,∠ABC=60°,PA=AB=2,
∴AH⊥BC,PH⊥BC,
∴∠PHA是二面角P-BC-A的平面角,
且AH=$\sqrt{A{B}^{2}-B{H}^{2}}$=$\sqrt{4-1}$=$\sqrt{3}$,
∴tan∠PHA=$\frac{PA}{AH}$=$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$,∴∠PHA=arctan$\frac{2\sqrt{3}}{3}$.
∴二面角P-BC-A的大小为arctan$\frac{2\sqrt{3}}{3}$.
(3)作EF⊥AD,则EF∥PA,
∵PA⊥底面ABCD,∴EF⊥底面ABCD,
∵PA=2,∴EF=1,
∵底面是菱形的四棱锥P-ABCD中,∠ABC=60°,AB=2,
∴S△ACD=$\frac{\sqrt{3}}{4}×4$=$\sqrt{3}$.
三棱锥E-ACD的体积为V=$\frac{1}{3}×\sqrt{3}×1=\frac{\sqrt{3}}{3}$.
点评 本题考查线面平行的证明,考查二面角的大小的求法,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1 | C. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1 | D. | $\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{6}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$<x1x2<1 | B. | x1x2=1 | C. | 1<x1x2<2 | D. | x1x2≥2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com