精英家教网 > 高中数学 > 题目详情
4.五进制数444(5)转化为八进制数是174(8)

分析 首先把五进制数字转化成十进制数字,用所给的数字最后一个数乘以5的0次方,依次向前类推,相加得到十进制数字,再用这个数字除以8,倒序取余即得八进制数.

解答 解:444(5)=4×52+4×51+4×50=124(10)
124÷8=15…4
15÷8=1…7
1÷8=0…1
故124(10)=174(8)
故答案为:174(8)

点评 本题考查进位制之间的转化,本题涉及到三个进位制之间的转化,实际上不管是什么之间的转化,原理都是相同的,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在底面是菱形的四棱锥P-ABCD中,PA⊥底面ABCD,∠ABC=60°,PA=AB=2,E是PD中点.
(1)求证:PB∥平面ACE;
(3)求二面角P-BC-A的大小;
(2)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:$\frac{sin(α-3π)+cos(π-α)+sin(\frac{π}{2}-α)-2cos(\frac{π}{2}+α)}{-sin(-α)+cos(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(2ωx+$\frac{π}{3}$)(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$.
(1)求f(x)在[0,π]上的单调递增区间;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位后,再将得到的图象上各点的横坐标伸长原来的2倍,纵坐标不变,得到函数y=g(x)的图象.对任意的x∈[0,$\frac{π}{2}$],不等式g2(x)-2mg(x)+2m+1>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设抛物线y2=16x的焦点为F,准线为l,P为抛物线上一点,PA和l垂直,A为垂足,如果直线AF的斜率为$-\sqrt{3}$,则|PF|=(  )
A.16B.8C.$8\sqrt{3}$D.$16\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用数字2,3组成四位数,则数字2,3至少都出现一次的四位数的概率是(  )
A.$\frac{1}{8}$B.$\frac{7}{8}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校教务处要对高三上学期期中数学试卷进行调研,考察试卷中某道填空题的得分情况.已知该题有两空,第一空答对得3分,答错或不答得0分;第二空答对得2分,答错或不答得0分.第一空答对与否与第二空答对与否是相互独立的.从该校1468份试卷中随机抽取1000份试卷,其中该题的得分组成容量为1000的样本,统计结果如下表:
第一空得分情况第二空得分情况
得分03得分02
人数198802人数698302
(1)求样本试卷中该题的平均分,并据此估计该校高三学生该题的平均分.
(2)该校的一名高三学生因故未参加考试,如果这名学生参加考试,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率.试求该同学这道题得分ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)对于任意的x∈R都有f(x+4)=-$\frac{1}{f(x)}$,设an=f(n)(n∈N*),数列{an}中,不同的值至多有(  )个.
A.12个B.8个C.6个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域为D,在区域D内随机取一点P,则点P落在圆x2+y2=1内的概率为$\frac{π}{8}$.

查看答案和解析>>

同步练习册答案