精英家教网 > 高中数学 > 题目详情
如图,三棱锥P-ABC中,已知PA^平面ABC, PA=3,PB=PC=BC="6," 求二面角P-BC-A的正弦值
解:取BC的中点D,连结PDAD,∵ PB =PC,∴ PDBC
  ∵ PA⊥平面ABC,由三垂线定理的逆定理得 ADBC
  ∴ ∠PDA就是二面角P-BC-A的平面角
  ∵ PB = PC = BC =" 6"  ,∴ PD = 
  sin∠PDA=  即二面角P-BC-A的正弦值是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在四棱锥P—ABCD中, CD∥AB, AD⊥AB,  BC⊥PC ,
(1)求证:PA⊥BC
(2)试在线段PB上找一点M,使CM∥平面PAD, 并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.
(1)建立适当的坐标系,并写出点B,P的坐标;
(2)求异面直线PA与BC所成角的余弦值;
(3)若PB的中点为M,求证:平面AMC⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平方米的材料制成一个有盖的圆锥形容器,如果在制作过程中材料无损耗,且材料的厚度忽略不计,底面半径长为,圆锥母线的长为

(1)、建立的函数关系式,并写出的取值范围;(6分)
(2)、圆锥的母线与底面所成的角大小为,求所制作的圆锥形容器容积多少立方米(精确到0. 01m3) (6分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若正三棱柱的棱长均相等,则与侧面所成角的正切值为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图2,长方体中,其中外接球球心为点O,外接球体积为,若的最小值为,则两点的球面距离为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(12分)
如图,已知四棱锥的底面为矩形,平面分别为的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三个平面,若,且相交但不垂直,直线分别为内的直线,则下列命题中:①任意;②任意; ③存在; ④存在; ⑤任意; ⑥存在。真命题的序号是_________ 。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱锥中,已知点分别为棱的中点.

(Ⅰ)求证:∥平面
(Ⅱ)若,求证:.

查看答案和解析>>

同步练习册答案