11£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos£¨¦È-$\frac{¦Ð}{3}$£©
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãP£¨x£¬y£©ÊÇÖ±ÏßlÉÏλÓÚÔ²Äڵ͝µã£¨º¬¶Ëµã£©£¬Çó$\sqrt{3}$x+yµÄ×î´óÖµºÍ×îСֵ£®

·ÖÎö £¨I£©Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos£¨¦È-$\frac{¦Ð}{3}$£©£¬Õ¹¿ª¿ÉµÃ£º¦Ñ2=4$£¨\frac{1}{2}¦Ñcos¦È+\frac{\sqrt{3}}{2}¦Ñsin¦È£©$£¬°Ñ¦Ñ2=x2+y2£¬x=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈë¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨II£©Ô²CµÄ±ê×¼·½³ÌΪ£º$£¨x-1£©^{2}+£¨y-\sqrt{3}£©^{2}$=4£®Éèz=$\sqrt{3}$x+y£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëz=$\sqrt{3}$x+y£¬¿ÉµÃ£ºz=2$\sqrt{3}$-t£¬ÓÉÓÚÖ±Ïßl¾­¹ýÔ²ÐÄ£¬kd µãP¶ÔÓ¦µÄ²ÎÊýÂú×ã-2¡Üt¡Ü2¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos£¨¦È-$\frac{¦Ð}{3}$£©£¬Õ¹¿ª¿ÉµÃ£º¦Ñ2=4$£¨\frac{1}{2}¦Ñcos¦È+\frac{\sqrt{3}}{2}¦Ñsin¦È£©$£¬
¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2-2x-2$\sqrt{3}$y=0£®
£¨II£©Ô²CµÄ±ê×¼·½³ÌΪ£º$£¨x-1£©^{2}+£¨y-\sqrt{3}£©^{2}$=4£¬Ô²ÐÄC$£¨1£¬\sqrt{3}£©$£¬°ë¾¶r=2£®Éèz=$\sqrt{3}$x+y£®
°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëz=$\sqrt{3}$x+y£¬¿ÉµÃ£ºz=2$\sqrt{3}$-t£¬
ÓÉÓÚÖ±Ïßl¾­¹ýÔ²ÐÄ£¬
¡àµãP¶ÔÓ¦µÄ²ÎÊýÂú×ã-2¡Üt¡Ü2£®
¡à$2\sqrt{3}$-2¡Ü$2\sqrt{3}$-t¡Ü2$\sqrt{3}$+2£®
¼´$\sqrt{3}$x+yµÄ×î´óÖµºÍ×îСֵ·Ö±ðΪ$2\sqrt{3}$+2£»2$\sqrt{3}$-2£®

µãÆÀ ±¾Ì⿼²éÁËÖ±½Ç×ø±êÓë¼«×ø±êµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚ¡÷ABCÖУ¬Éè$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬Ôò¡°$\overrightarrow{a}$•$\overrightarrow{b}$£¾0¡±ÊÇ¡°¡÷ABCΪÈñ½ÇÈý½ÇÐΡ±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}$£¨tΪ²ÎÊý£©£¬µ±t=1ʱ£¬ÇúÏßC1ÉϵĵãΪA£¬µ±t=-1ʱ£¬ÇúÏßC1ÉϵĵãΪB£®ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{6}{\sqrt{4+5sin^2¦È}}$£®
£¨1£©ÇóA¡¢BµÄ¼«×ø±ê£»
£¨2£©ÉèMÊÇÇúÏßC2Éϵ͝µã£¬Çó|MA|2+|MB|2µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®É躯Êýf£¨x£©=x-asinx£¬x¡Ê[0£¬$\frac{¦Ð}{2}$]£®
£¨¢ñ£©µ±a=2ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôf£¨x£©¡Ücosx£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®É躯Êýf£¨x£©=ax-£¨a+1£©lnx£¬ÆäÖÐa¡Ý-1£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{2e}^{x}}{1{+x}^{2}}$£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬Èôm£¾4£¨ln2-1£©£®ÇóÖ¤£ºµ±x£¾0ʱ£¬f£¨x£©£¾$\frac{{2x}^{2}-mx+2}{1{+x}^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¼«×ø±êϵÓëÖ±½Ç×ø±êϵxOyÓÐÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣮÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin¦È=a£¨a£¾0£©£¬ÉäÏߦÈ=¦Õ£¬¦È=¦Õ-$\frac{¦Ð}{4}$£¬¦È=¦Õ+$\frac{¦Ð}{2}$£¬ÓëÇúÏßC1·Ö±ð½»ÒìÓÚ¼«µãOµÄËĵãA¡¢B¡¢C¡¢D£®
£¨¢ñ£©ÈôÇúÏßC1¹ØÓÚÇúÏßC2¶Ô³Æ£¬ÇóaµÄÖµ£¬²¢°ÑÇúÏßC1ºÍÇúÏßC2»¯³ÉÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Çó|OA|•|OC|+|OB|•|OD|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}$£¨¦ÈΪ²ÎÊý£©£®ÒÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}£©$=$\sqrt{2}$£®
£¨¢ñ£©½«ÇúÏßCºÍÖ±Ïßl»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ABÊÇÔ²OµÄÖ±¾¶£¬µãDÊÇÏÒBCµÄÖе㣬ֱÏßAD½»Ô²OÓÚµãE£¬¹ýµãE×÷EF¡ÍBCÓÚµãH£¬½»Ô²OÓÚµãF£¬½»ABÓÚµãI£¬ÈôOF¡ÍAB£®
£¨1£©Ö¤Ã÷£ºCA=CD£»
£¨2£©ÈôÔ²µÄ°ë¾¶Îª2$\sqrt{5}$£¬ÇóDIµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸