精英家教网 > 高中数学 > 题目详情
是两条不同的直线,是两个不重合的平面,
给定下列四个命题,其中为真命题的序号是              
;②
;④
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面分别为的中点.
(Ⅰ)证明:平面
(Ⅱ)求与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



( 本小题满分12分)
(普通中学做)如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60
求PA与底面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,点P在正方形ABCD所在的平面外,PD⊥面ABCD,∠PAD=45°,空间一点E在平面ABCD上的射影是点B,且PB⊥面AEC.

(1)求直线AD与平面AEC所成的角的正切值;
(2)若F是AP的中点,求直线BF与CE所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((10分)如图所示,在四棱锥PABCD中,底面为直角梯形,ADBCBAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BCMN分别为PCPB的中点.

(1)求证:PBDM
(2)求BD与平面ADMN所成的角.                          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,下列四个命题:
①若            ②若 
③若     ④若 
其中正确命题的个数是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四面体ABCD中,DA⊥面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.求证:
(1)EF⊥DC; (2)平面DBC⊥平面AEF; (3)若AD=AB=a,AC=求二面角B-DC-A的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若半径是的球与正三棱柱的各个面都相切,则球与正三棱柱的体积比是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在正方体ABCDA1B1C1D1中,MN分别是棱ABCC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,
有以下四个命题:
A.平面MB1PND1
B.平面MB1P⊥平面ND1A1
C.△MB1P在底面ABCD上的射影图形的面积为定值;
D.△MB1P在侧面D1C1CD上的射影图形是三角形.
其中正确命题的序号是__________.

查看答案和解析>>

同步练习册答案