3£®¼ºÖªº¯Êýf£¨x£©=-x3+x2+ax+b£¬g£¨x£©=clnx£¬ÆäÖÐa£¬b£¬cΪʵÊý£¬Èôº¯Êýg£¨x£©µÄͼÏóºã¹ý¶¨µãP£¬ÇÒº¯Êýf£¨x£©µÄͼÏóÔÚµãP´¦µÄÇÐÏßÓëÖ±Ïßx-y-4=0´¹Ö±£®
£¨1£©ÇóʵÊýa¡¢bµÄÖµ£»
£¨2£©ÉèF£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬x£¼1}\\{g£¨x£©-c£¬x¡Ý1}\end{array}\right.$
¢ÙÇóº¯ÊýF£¨x£©ÔÚ[-1£¬e]£¨ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©ÉϵÄ×î´óÖµ£»
¢ÚÇúÏßy=F£¨x£©ÉÏÊÇ·ñ´æÔÚÁ½µãP£¬Q£®Ê¹µÃ¡÷POQÊÇÒÔO£¨OÎª×ø±êÔ­µã£©ÎªÖ±½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬¶øÇÒ´ËÈý½ÇÐÎб±ßÖеãÔÚyÖáÉÏ£¿Èô´æÔÚ£¬Çó³öʵÊýcµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓú¯Êýg£¨x£©Í¼Ïóºã¹ý¶¨µãÇó³öÇÐÏßбÂÊ£¬´Ó¶øÈ·¶¨Çеã×ø±ê£¬½¨Á¢·½³Ì×飬Çó³öa¡¢bµÄÖµ£»
£¨2£©¢Ù¸ù¾Ý·Ö¶Îº¯Êý£¬·ÖÀàÌÖÂÛ£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉÇóF£¨x£©ÔÚ[-1£¬e]ÉϵÄ×î´óÖµ£»
¢Ú¸ù¾Ý·Ö¶Îº¯Êý£¬·ÖÀàÌÖÂÛ£¬ÀûÓÃ$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0£¬¼´¿ÉÇóʵÊýcµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©¡ßº¯Êýf£¨x£©=-x3+x2+ax+b£¬¡àf¡ä£¨x£©=-3x2+2x+a£¬
g£¨x£©=clnx£¬
¡àº¯Êýg£¨x£©µÄͼÏóºã¹ý¶¨µãP£¨1£¬0£©£¬
µ±x=1ʱ£¬f¡ä£¨1£©=-3+2+a=a-1£¬
ÓÖº¯Êýf£¨x£©µÄͼÏóÔÚµãP´¦µÄÇÐÏßÓëÖ±Ïßx-y-4=0´¹Ö±£¬
¡àa-1=-1£¬½âµÃa=0£»
ÓÖf£¨1£©=-1+1+a+b=0£¬½âµÃb=0£»
£¨2£©¢ÙÓÉ£¨1£©Öª£¬f£¨x£©=-x3+x2£»
µ±x£¼1ʱ£¬F£¨x£©=f£¨x£©£¬
ÇÒf¡ä£¨x£©=-3x2+2x=-x£¨3x-2£©£»
Áîf¡ä£¨x£©=0¿ÉµÃx=0»òx=$\frac{2}{3}$£¬¹Êº¯ÊýÔÚ£¨-1£¬0£©ºÍ£¨$\frac{2}{3}$£¬e£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨0£¬$\frac{2}{3}$£©Éϵ¥µ÷µÝÔö£»
¡àx£¼1ʱ£¬f£¨x£©µÄ×î´óֵΪmax{f£¨-1£©£¬f£¨$\frac{2}{3}$£©}=f£¨-1£©=2£»
µ±1¡Üx¡Üeʱ£¬F£¨x£©=g£¨x£©=clnx-c£¬
Èôc¡Ü0£¬Ôòg£¨x£©ÔÚ[1£¬e]ÉÏÊǵ¥µ÷¼õº¯Êý£¬×î´óÖµÊÇg£¨1£©=-c£»
Èôc£¾0£¬Ôòg£¨x£©ÔÚ[1£¬e]Éϵ¥µ÷µÝÔö£¬ÇÒg£¨e£©=0£»
×ÛÉÏ£¬c¡Ý-2ʱ£¬F£¨x£©ÔÚ[-1£¬e]ÉϵÄ×î´óֵΪ2£»
c£¼-2ʱ£¬F£¨x£©ÔÚ[-1£¬e]ÉϵÄ×î´óֵΪ-c£»
¢ÚF£¨x£©=$\left\{\begin{array}{l}{{-x}^{3}{+x}^{2}£¬x£¼1}\\{clnx-c£¬x¡Ý1}\end{array}\right.$£¬
¸ù¾ÝÌõ¼þP£¬QµÄºá×ø±ê»¥ÎªÏà·´Êý£¬²»·ÁÉèP£¨-t£¬t3+t2£©£¬Q£¨t£¬f£¨t£©£©£¬£¨t£¾0£©£®
Èôt£¼1£¬Ôòf£¨t£©=-t3+t2£¬
ÓÉ¡ÏPOQÊÇÖ±½ÇµÃ£¬$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0£¬¼´-t2+£¨t3+t2£©£¨-t3+t2£©=0£¬
¼´t4-t2+1=0£®´ËʱÎ޽⣻
Èôt¡Ý1£¬Ôòf£¨t£©=clnt-c£®
ÓÉÓÚPQµÄÖеãÔÚyÖáÉÏ£¬ÇÒ¡ÏPOQÊÇÖ±½Ç£¬ËùÒÔQµã²»¿ÉÄÜÔÚxÖáÉÏ£¬¼´t¡Ù1£®
ͬÀíÓÉ$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0£¬¼´-t2+£¨t3+t2£©•£¨clnt-c£©=0£¬¡àc=$\frac{1}{£¨t+1£©£¨lnt-1£©}$£®
ÓÉÓÚº¯Êýh£¨t£©=$\frac{1}{£¨t+1£©£¨lnt-1£©}$£¨t£¾1£©µÄÖµÓòÊÇ£¨-1£¬0£©¡È£¨0£¬+¡Þ£©£¬
ËùÒÔʵÊýcµÄȡֵ·¶Î§ÊÇ£¨-1£¬0£©¡È£¨0£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éÁ˵¼ÊýµÄ×ÛºÏÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˺¯ÊýµÄ×îÖµÓë·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¼ÆËãÓëÍÆÀíÄÜÁ¦£¬ÊÇÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬ÒÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ô²×¶ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{3{+sin}^{2}¦È}$£®
£¨1£©ÇóÔ²×¶ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÓëÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÖ±Ïßl½»Ô²×¶ÇúÏßCÓÚM£¬NÁ½µã£¬Çó|MN|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Ö±ÏßC1µÄ¼«×ø±ê·½³ÌÊǦÑsin¦È+¦Ñcos¦È-1=0£¬Ô²C2µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁÊDzÎÊý£©£®
£¨1£©ÇóÖ±ÏßC1ºÍÔ²C2µÄ½»µãµÄ¼«×ø±ê£»
£¨2£©ÈôÖ±Ïßl¾­¹ýÖ±ÏßC1ºÍÔ²C2½»µãµÄÖе㣬ÇÒ´¹Ö±ÓÚÖ±ÏßC1£¬ÇóÖ±ÏßlµÄ¼«×ø±ê·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¼ÆËãsin43¡ãcos13¡ã-sin13¡ãcos43¡ãµÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{\sqrt{3}}{3}$C£®$\frac{\sqrt{2}}{2}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®$\underset{lim}{n¡ú¡Þ}$£¨1+$\frac{1}{2}$£©£¨1+$\frac{1}{{2}^{2}}$£©£¨1+$\frac{1}{{2}^{4}}$£©£¨1+$\frac{1}{{2}^{8}}$£©¡­£¨1+$\frac{1}{{2}^{{2}^{n}}}$£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬×Ô¶þÃæ½Ç¦Á-l-¦ÂÄÚÈÎÒâÒ»µãA·Ö±ð×÷AB¡Í¦Á£¬AC¡Í¦Â£¬´¹×ã·Ö±ðΪBºÍC£¬Èô¡ÏBAC=30¡ã£¬Ôò¶þÃæ½Ç¦Á-l-¦ÂµÄ´óСΪ150¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬¡ÑOÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬DÊÇ$\widehat{AC}$µÄÖе㣬BD½»ACÓÚµãE£®
£¨I£©ÇóÖ¤£ºAB•CD=BD•AE
£¨¢ò£©ÈôCD=2£¬AC=2$\sqrt{3}$£¬Çó¡ÑOµÄÃæ»ýS£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÈçͼËùʾ£¬ABÊÇÔ²OµÄÖ±¾¶£¬BCÓëÔ²OÏàÇÐÓÚB£¬¡ÏADC+¡ÏDCO=180¡ã
£¨¢ñ£©Ö¤Ã÷£º¡ÏBCO=¡ÏDCO£»
£¨¢ò£©Èô¡ÑO°ë¾¶ÎªR£¬ÇóAD•OCµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÈýÀâÖùABC-A1B1C1ÈçͼËùʾ£¬ÆäÖÐCA¡ÍÆ½ÃæABB1A1£¬ËıßÐÎABB1A1ΪÁâÐΣ¬¡ÏAA1B1=60¡ã£¬EΪBB1µÄÖе㣬FΪCB1µÄÖе㣮
£¨1£©Ö¤Ã÷£ºÆ½ÃæAEF¡ÍÆ½ÃæCAA1C1£»
£¨2£©ÈôCA=2£¬AA1=4£¬ÇóB1µ½Æ½ÃæAEFµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸