精英家教网 > 高中数学 > 题目详情
精英家教网如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.设D,E分别为PA,AC中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:BC⊥平面PAB;
(Ⅲ)试问在线段AB上是否存在点F,使得过三点 D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.
分析:(Ⅰ)证明以DE∥平面PBC,只需证明DE∥PC;
(Ⅱ)证明BC⊥平面PAB,根据线面垂直的判定定理,只需证明PA⊥BC,AB⊥BC;
(Ⅲ)当点F是线段AB中点时,证明平面DEF∥平面PBC,可得平面DEF内的任一条直线都与平面PBC平行.
解答:解:精英家教网(Ⅰ)证明:因为点E是AC中点,点D为PA的中点,所以DE∥PC.
又因为DE?面PBC,PC?面PBC,
所以DE∥平面PBC.                                    ….(4分)
(Ⅱ)证明:因为平面PAC⊥面ABC,平面PAC∩平面ABC=AC,又PA?平面PAC,PA⊥AC,
所以PA⊥面ABC,
因为BC?平面ABC,
所以PA⊥BC.
又因为AB⊥BC,且PA∩AB=A,
所以BC⊥面PAB.                                        ….(9分)
(Ⅲ)解:当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行.
取AB中点F,连EF,连DF.
由(Ⅰ)可知DE∥平面PBC.
因为点E是AC中点,点F为AB的中点,
所以EF∥BC.
又因为EF?平面PBC,BC?平面PBC,
所以EF∥平面PBC.
又因为DE∩EF=E,
所以平面DEF∥平面PBC,
所以平面DEF内的任一条直线都与平面PBC平行.
故当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行.                                      ….(14分)
点评:本题考查线面平行,考查线面垂直,考查面面平行,考查学生分析解决问题的能力,掌握线面平行、线面垂直、面面垂直的判定定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案