精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,抛物线C的焦点在y轴上,且抛物线上的点P(x,4)到焦点F的距离为5.斜率为2的直线l与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的标准方程,及抛物线在P点处的切线方程;
(Ⅱ)若AB的垂直平分线分别交y轴和抛物线于M,N两点(M,N位于直线l两侧),当四边形AMBN为菱形时,求直线l的方程.
【答案】分析:(Ⅰ)设抛物线的方程,根据点P到焦点F的距离为5,可得抛物线的标准方程,利用导数,即可求得抛物线在P点处的切线方程;
(Ⅱ)设直线l的方程与抛物线方程联立,利用韦达定理,求得AB的中点,从而可得AB的垂直平分线方程,进一步确定M、N的坐标,即可求得直线l的方程.
解答:解:(Ⅰ)依题意设抛物线C:x2=2py(p>0),
因为点P到焦点F的距离为5,所以点P到准线的距离为5.
因为P(x,4),所以由抛物线准线方程可得,∴p=2.
所以抛物线的标准方程为x2=4y.                   …(4分)
,所以 ,点P(±4,4),
所以
所以点P(-4,4)处抛物线切线方程为y-4=-2(x+4),即2x+y+4=0;点P(4,4)处抛物线切线方程为y-4=2(x-4),即2x-y-4=0.
所以P点处抛物线切线方程为2x+y+4=0,或2x-y-4=0.   …(7分)
(Ⅱ)设直线l的方程为y=2x+m,A(x1,y1),B(x2,y2),
联立,消y得x2-8x-4m=0,△=64+16m>0.
所以x1+x2=8,x1x2=-4m,
所以
即AB的中点为Q(4,8+m).
所以AB的垂直平分线方程为
因为四边形AMBN为菱形,所以M(0,m+10),
因为M,N关于Q(4,8+m)对称,所以N点坐标为N(8,m+6),
因为N在抛物线上,所以64=4×(m+6),即m=10,
所以直线l的方程为y=2x+10.       …(14分)
点评:本题考查抛物线的标准方程,考查抛物线的切线方程,考查直线与抛物线的位置关系,考查韦达定理的而运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案