精英家教网 > 高中数学 > 题目详情

设f(x)=-数学公式x3+数学公式x2+2ax.若f(x)在 (数学公式)存在单调增区间,求a的取值范围.

解:由f′(x)=
当x∈时,f′(x)的最大值为
,可得
所以,当时,f(x)在 ()存在单调增区间.
分析:求导函数,再求出f′(x)的最大值,令其大于0,即可求得a的取值范围.
点评:本题重点考查导数知识的运用,考查函数的单调性,解题的关键是利用f′(x)的最大值大于0,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设f(x)=x3-3x2-9x+1,则不等式f′(x)<0的解集是
(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-
1
2
)•f(
1
2
)<0,则方程f(x)=0在[-1,1]内(  )
A、可能有3个实数根
B、可能有2个实数根
C、有唯一的实数根
D、没有实数根

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a、b的值,并求出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
34
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,则下列命题中错误的是(  )

查看答案和解析>>

同步练习册答案