精英家教网 > 高中数学 > 题目详情
函数y=x2-2x-1在闭区间[0,3]上的最大值与最小值的和是(  )
分析:函数y=x2-2x-1是一条以x=1为对称轴,开口向上的抛物线,在闭区间[0,3]上先减后增,所以当x=1时,函数取最小值;当x=3时,函数取最大值,代入计算即可
解答:解:∵y=x2-2x-1=(x-1)2-2
∴当x=1时,函数取最小值-2,
当x=3时,函数取最大值2
∴最大值与最小值的和为0
故选B
点评:本题考查了二次函数的图象和性质,利用配方法求二次函数最值的方法,解题时要把准抛物线的对称轴和开口方向,准确解题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2-2x+5(x∈[-1,2])的最大值是
8
8
,最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-2x+1
的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+2x,x∈[-2,3],则值域为
[-1,15]
[-1,15]

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A为函数y=
x-1
x2-3x+2
的定义域,集合B为函数y=
-x2+2x+4
的值域,则A∩B=
[0,1)∪(1,2)∪(2,
5
]
[0,1)∪(1,2)∪(2,
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+2x+3(x≥0)的值域为(  )

查看答案和解析>>

同步练习册答案