精英家教网 > 高中数学 > 题目详情
15.已知f(x)=x2-3ax+2a2
(1)若实数a=1时,求不等式f(x)≤0的解集;
(2)求不等式f(x)<0的解集.

分析 (1)根据一元二次不等式的解法计算即可.
(2)对系数a进行讨论,根据一元二次不等式的解法求f(x)<0的解集.

解答 解:(1)当a=1时,依题意得x2-3x+2≤0
因式分解为:(x-2)(x-1)≤0,
解得:x≥1或x≤2.
∴1≤x≤2.
不等式的解集为{x|1≤x≤2}.
(2)依题意得x2-3ax+2a2<0
∴(x-a)(x-2a)<0…(5分)
对应方程(x-a)(x-2a)=0
得x1=a,x2=2a
当a=0时,x∈∅.
当a>0时,a<2a,∴a<x<2a;
当a<0时,a>2a,∴2a<x<a;
综上所述,当a=0时,原不等式的解集为∅;
当a>0时,原不等式的解集为{x|a<x<2a};
当a<0时,原不等式的解集为{x|2a<x<a};

点评 本题考查了一元二次不等式的解法,对一元二次方程系数的讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某个实验中,测得变量x和变量y的几组数据,如表:
x0.500.992.013.98
y-0.990.010.982.00
则对x,y最适合的拟合函数是(  )
A.y=2xB.y=x2-1C.y=log2xD.y=2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{2x+y+k≤0}\end{array}\right.$,(k为常数),若z=3x+y的最大值为8,则k的值为(  )
A.$-\frac{16}{3}$B.$\frac{16}{3}$C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=$\frac{3}{5}$,则△ABC的面积是(  )
A.16B.6C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,则目标函数z=x-3y的最大值为5 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$),其导函数f'(x)的部分图象如图所示,则函数f(x)的解析式为(  )
A.$f(x)=cos(2x-\frac{π}{6})$B.$f(x)=sin(2x+\frac{π}{6})$C.$f(x)=\frac{1}{2}cos(2x+\frac{π}{6})$D.$f(x)=\frac{1}{2}sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中点.
(1)求证:AM∥平面PCD;
(2)设点N是线段CD上的一动点,当点N在何处时,直线MN与平面PAB所成的角最大?并求出最大角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知在等比数列{an}中,a3+a6=6,a5+a8=9,则a7+a10等于(  )
A.5B.$\frac{25}{2}$C.6D.$\frac{27}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数$\frac{2+i}{1-2i}+2$的共轭复数是(  )
A.$2-\frac{3}{5}i$B.$2+\frac{3}{5}i$C.2+iD.2-i

查看答案和解析>>

同步练习册答案