精英家教网 > 高中数学 > 题目详情
10.已知实数x,y满足$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,则目标函数z=x-3y的最大值为5 

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.

解答 解:由z=x-3y得y=$\frac{1}{3}x-\frac{z}{3}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{3}x-\frac{z}{3}$,
由图象可知当直线y=$\frac{1}{3}x-\frac{z}{3}$经过点C时,直线y=$\frac{1}{3}x-\frac{z}{3}$的截距最小,
此时z最大,
由$\left\{\begin{array}{l}{x+y=1}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1).
代入目标函数z=x-3y,
得z=2-3×(-1)=2+3=5,
故答案为:5.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\sqrt{{{log}_{\frac{1}{2}}}(3-x)}$的定义域是(  )
A.(2,3)B.(-∞,3)C.(3,+∞)D.[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边分别为a,b,c,A=60°,b=4,面积为$4\sqrt{3}$,则c的长度为(  )
A.4B.$4\sqrt{3}$C.8D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列1,-4,7,-10,13,…,的通项公式an为(  )
A.2n-1B.-3n+2C.(-1)n+1(3n-2)D.(-1)n+13n-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,已知a=2$\sqrt{3}$,b=6,A=30°,则B=(  )
A.60°B.120°C.120°或60°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2-3ax+2a2
(1)若实数a=1时,求不等式f(x)≤0的解集;
(2)求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\frac{sinα-2cosα}{sinα+cosα}$=-1,则tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等比数列{an}的前n项和为Sn,若S8=2S4,则$\frac{a_3}{a_1}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等式$\frac{1}{()}$+$\frac{9}{()}$+$\frac{16}{()}$=1的分母上的三个括号中各填入一个正整数,使得该等式成立,则所填三个正整数的和的最小值是64.

查看答案和解析>>

同步练习册答案