精英家教网 > 高中数学 > 题目详情
19.复数$\frac{2+i}{1-2i}+2$的共轭复数是(  )
A.$2-\frac{3}{5}i$B.$2+\frac{3}{5}i$C.2+iD.2-i

分析 直接由复数代数形式的乘除运算化简复数$\frac{2+i}{1-2i}+2$,则答案可求.

解答 解:$\frac{2+i}{1-2i}+2$=$\frac{(2+i)(1+2i)}{(1-2i)(1+2i)}+2=\frac{5i}{5}+2=2+i$,
则复数$\frac{2+i}{1-2i}+2$的共轭复数是:2-i.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了共轭复数的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2-3ax+2a2
(1)若实数a=1时,求不等式f(x)≤0的解集;
(2)求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知角α的终边上的一点的坐标为($\frac{3}{5},\frac{4}{5}$),则$\frac{cos2α}{1+sin2α}$=(  )
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an},a1=3,an+1=-2an-3n-1.
(1)求证:数列{an+n}为等比数列;       
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等式$\frac{1}{()}$+$\frac{9}{()}$+$\frac{16}{()}$=1的分母上的三个括号中各填入一个正整数,使得该等式成立,则所填三个正整数的和的最小值是64.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设实数a,b满足0≤a,b≤8,且b2=16+a2,则b-a的最大值与最小值之和为12-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$则满足f(1-x2)>f(2x)的x的取值范围是(-1,$\sqrt{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设双曲线$\frac{x^2}{m}+\frac{y^2}{n}=1\;(mn<0)$的一条渐近线为y=-2x,且一个焦点与抛物线$y=\frac{1}{4}{x^2}$的焦点相同,则此双曲线的方程为(  )
A.$\frac{5}{4}{x^2}-5{y^2}=1$B.$5{y^2}-\frac{5}{4}{x^2}=1$C.$5{x^2}-\frac{5}{4}{y^2}=1$D.$\frac{5}{4}{y^2}-5{x^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,已知四边形ABFD为直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$为等边三角形,AD=DF=2AF=2,C为DF的质点,如图2,将平面AED、BCF分别沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF、DF,设G为AE上任意一点.
(1)证明:DG∥平面BCF;
(2)求折起后的各平面围成的几何体的体积.

查看答案和解析>>

同步练习册答案