精英家教网 > 高中数学 > 题目详情
11.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$则满足f(1-x2)>f(2x)的x的取值范围是(-1,$\sqrt{2}$-1).

分析 画出函数图象,由图象和函数值的大小关系,得到关于x的不等式,解不等式即可画出函数图象,由图象和函数值的大小关系,得到关于x的不等式,解不等式即可

解答 解:由题意,画出函数f(x)的图象如图:
∵f(1-x2)>f(2x)
∴$\left\{\begin{array}{l}{1-{x}^{2}>0}\\{2x<0}\end{array}\right.$或$\left\{\begin{array}{l}{1-{x}^{2}>0}\\{2x≥0}\\{1-{x}^{2}>2x}\end{array}\right.$
解得:-1<x<0或0≤x<$\sqrt{2}$-1,
即-1<x<$\sqrt{2}$-1,
故答案为:(-1,$\sqrt{2}$-1)

点评 本题考查一元二次不等式的解法和二次函数的单调性.要注意数形结合思想和分类讨论思想的应用.属简单题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中点.
(1)求证:AM∥平面PCD;
(2)设点N是线段CD上的一动点,当点N在何处时,直线MN与平面PAB所成的角最大?并求出最大角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且f(-$\frac{1}{2}$+x)=f(-$\frac{1}{2}$-x),令g(x)=f(x)-|λx-l|(λ>0).
(1)求函数f(x)的表达式;
(2)求函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数$\frac{2+i}{1-2i}+2$的共轭复数是(  )
A.$2-\frac{3}{5}i$B.$2+\frac{3}{5}i$C.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>0,b>0,且a2+b2=18.
(1)若a+b≤m恒成立,求m的最小值;
(2)若2|x-1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三角形ABC是边长为4的正三角形,PA⊥底面ABC,$PA=\sqrt{7}$,点D是BC的中点,点E在AC上,且DE⊥AC.
(1)证明:平面PDE⊥平面PAC;
(2)求三棱锥C-PDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既是奇函数,又在(0,+∞)上是单调递增的函数的是(  )
A.y=x3B.y=|x|+1C.y=-x2+1D.y=$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设△ABC的内角A、B、C的对边分别为a,b,c,3c=8a.
(1)若cosC=$\frac{2\sqrt{2}}{3}$,求sinA;
(2)若B=$\frac{π}{3}$,且△ABC的面积为6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln(x2+1),g(x)=$\frac{1}{{x}^{2}-1}$+a.
(1)求g(x)在P($\sqrt{2}$,g($\sqrt{2}$))处的切线方程l;
(2)求方程f(x)=g(x)的根的个数.

查看答案和解析>>

同步练习册答案