精英家教网 > 高中数学 > 题目详情
6.已知a>0,b>0,且a2+b2=18.
(1)若a+b≤m恒成立,求m的最小值;
(2)若2|x-1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.

分析 (1)根据(a+b)2≤2(a2+b2),即有a+b≤6,利用a+b≤m恒成立,求m的最小值;
(2)要使2|x-1|+|x|≥a+b恒成立,只需2|x-1|+|x|≥6,分类讨论,求实数x的取值范围.

解答 解:(1)(a+b)2≤2(a2+b2),即有a+b≤6,…(3分)
当且仅当a=b=3时等号成立,又要求a+b≤m恒成立,∴m≥6,
故m的最小值为6…(6分)
(2)要使2|x-1|+|x|≥a+b恒成立,只需2|x-1|+|x|≥6…(8分)
∴$\left\{{\begin{array}{l}{x≤0}\\{-2x+2-x≥6}\end{array}}\right.或\left\{{\begin{array}{l}{0<x≤1}\\{-2x+2+x≥6}\end{array}}\right.或\left\{{\begin{array}{l}{x>1}\\{2x-2+x≥6}\end{array}}\right.$,
解得$x≤-\frac{4}{3}或x≥\frac{8}{3}$…(10分)

点评 本题考查绝对值不等式的解法,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知$\frac{sinα-2cosα}{sinα+cosα}$=-1,则tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在三角形ABC中,内角A,B,C的对边分别是a,b,c,若b-c=$\frac{1}{3}$a,sinB=2sinA,则tan(B+C)=$-\frac{2\sqrt{14}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等式$\frac{1}{()}$+$\frac{9}{()}$+$\frac{16}{()}$=1的分母上的三个括号中各填入一个正整数,使得该等式成立,则所填三个正整数的和的最小值是64.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π;
②终边在y轴上的角的集合是$\{α|α=\frac{kπ}{2},k∈Z\}$;
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④把函数$y=3sin(2x+\frac{π}{3})$的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象;
⑤角θ为第一象限角的充要条件是sinθ>0
其中,真命题的编号是①④.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$则满足f(1-x2)>f(2x)的x的取值范围是(-1,$\sqrt{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若$0≤θ≤\frac{π}{2}$,当点(1,cosθ)到直线xsinθ+ycosθ-1=0的距离是$\frac{1}{4}$时,这条直线的斜率是(  )
A.$\frac{\sqrt{3}}{2}$B.-1C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆锥的底面半径为3,侧面积为15π,则圆锥的体积等于12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设经过抛物线y2=8x焦点F的直线l与抛物线交于A,B两点,若AB中点M到抛物线准线的距离为8,则l的斜率为±1.

查看答案和解析>>

同步练习册答案