精英家教网 > 高中数学 > 题目详情
3.在三角形ABC中,内角A,B,C的对边分别是a,b,c,若b-c=$\frac{1}{3}$a,sinB=2sinA,则tan(B+C)=$-\frac{2\sqrt{14}}{13}$.

分析 由已知利用正弦定理化角为边,得到b=2a,c=$\frac{5}{3}a$,再由余弦定理求得cosA,利用同角三角函数基本关系式得答案.

解答 解:由sinB=2sinA,得b=2a,又b-c=$\frac{1}{3}$a,
∴b=2a,c=$\frac{5}{3}a$,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}=\frac{4{a}^{2}+\frac{25{a}^{2}}{9}-{a}^{2}}{2•2a•\frac{5}{3}a}=\frac{13}{15}$,
∴sinA=$\sqrt{1-(\frac{15}{13})^{2}}=\frac{2\sqrt{14}}{15}$,则tanA=$\frac{2\sqrt{14}}{13}$.
故答案为:$-\frac{2\sqrt{14}}{13}$.

点评 本题考查三角形的解法,考查了正弦定理和余弦定理的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知f(x)=x2-(a+b)x+3a.
(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;
(2)若b=3,求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}的前n项和为Sn,若a6=-3,S6=12,则a5等于(  )
A.-3B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+2y-1≤0}\end{array}\right.$,则目标函数z=3x-y的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设等比数列{an}的各项均为正数,公比为q,前n项和为Sn,若对?n∈N*,有$\frac{{S}_{2n}}{{S}_{n}}$<5,则q的取值范围是(  )
A.(0,1]B.($\frac{1}{2}$,2)C.[1,$\sqrt{2}$)D.($\frac{\sqrt{2}}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且f(-$\frac{1}{2}$+x)=f(-$\frac{1}{2}$-x),令g(x)=f(x)-|λx-l|(λ>0).
(1)求函数f(x)的表达式;
(2)求函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的奇函数f(x)满足f(x+3)=-f(x),若f(1)>3,$f(11)=\frac{2a-1}{3-a}$,则实数a的取值范围为(  )
A.3<a<8B.a<3或a>8C.2<a<3D.a<2或a>3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>0,b>0,且a2+b2=18.
(1)若a+b≤m恒成立,求m的最小值;
(2)若2|x-1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={x|$\frac{x-3}{x+1}$≥0},B={x|log2x<2},则(∁RA)∩B=(0,3).

查看答案和解析>>

同步练习册答案