分析 设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到$\frac{1}{2}$•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高,即可求出圆锥的体积.
解答 解:设圆锥的母线长为l,
根据题意得$\frac{1}{2}$•2π•3•l=15π,解得l=5,
所以圆锥的高=$\sqrt{25-9}$=4,
所以圆锥的体积等于$\frac{1}{3}π•{3}^{2}•4$=12π.
故答案为12π.
点评 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x3 | B. | y=|x|+1 | C. | y=-x2+1 | D. | y=$\sqrt{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-x1)>f(-x2) | B. | f(-x1)<f(-x2) | C. | f(-x1)=f(-x2) | D. | |f(-x1)|<|f(-x2)| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{{n^2}-n+6}}{2}$ | B. | $\frac{{{n^2}-n+6}}{3}$ | C. | $\frac{{{n^2}-2n+10}}{2}$ | D. | $\frac{{{n^2}+3n+6}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com