精英家教网 > 高中数学 > 题目详情
20.设△ABC的内角A、B、C的对边分别为a,b,c,3c=8a.
(1)若cosC=$\frac{2\sqrt{2}}{3}$,求sinA;
(2)若B=$\frac{π}{3}$,且△ABC的面积为6$\sqrt{3}$,求b的值.

分析 (1)由正弦定理化简已知可得3sinC=8sinA,由已知利用同角三角函数基本关系式可求sinC的值,进而可求sinA的值.
(2)利用三角形的面积公式及已知可求a,c,利用余弦定理即可解得b的值.

解答 (本题满分为12分)
解:(1)∵3c=8a.
∴由正弦定理可得:3sinC=8sinA,
∵cosC=$\frac{2\sqrt{2}}{3}$,
∴sinC=$\frac{1}{3}$,
∴sinA=$\frac{1}{8}$…5分
(2)∵B=$\frac{π}{3}$,且△ABC的面积为6$\sqrt{3}$=$\frac{1}{2}$acsinB=$\frac{1}{2}a×\frac{8}{3}$a×sin$\frac{π}{3}$,
∴a=3,c=8,…8分
∴由余弦定理可得:b=$\sqrt{{8}^{2}+{3}^{2}-2×8×3×\frac{1}{2}}$=7…12分

点评 本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式,余弦定理在解三角形中的应用,考查了转化思想的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知角α的终边上的一点的坐标为($\frac{3}{5},\frac{4}{5}$),则$\frac{cos2α}{1+sin2α}$=(  )
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$则满足f(1-x2)>f(2x)的x的取值范围是(-1,$\sqrt{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设双曲线$\frac{x^2}{m}+\frac{y^2}{n}=1\;(mn<0)$的一条渐近线为y=-2x,且一个焦点与抛物线$y=\frac{1}{4}{x^2}$的焦点相同,则此双曲线的方程为(  )
A.$\frac{5}{4}{x^2}-5{y^2}=1$B.$5{y^2}-\frac{5}{4}{x^2}=1$C.$5{x^2}-\frac{5}{4}{y^2}=1$D.$\frac{5}{4}{y^2}-5{x^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆锥的底面半径为3,侧面积为15π,则圆锥的体积等于12π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.今年我校高中部在全市初三学生中进行自主招生试点,通过面试招录35名优秀初三毕业生,第一轮面试共有从易到难的A、B、C、D四个问题,规则如下:
(1)每位参加者都必须按问题A、B、C、D顺序作答,直至答题结束;
(2)每位参加者计分器的初始分数都是100分,答对问题A加10分,答对问题B加20分,答对问题C加30分,答对问题D加60分,答错任意一题减20分;
(3)每回答一题,计分器显示累计分数,当累计分数小于80分时,答题结束,直接淘汰出局;
(4)当累计分数大于或等于140分时,答题结束,直接进入下一轮;
(5)当答完四题,累计分数仍不足140分时,答题结束,淘汰出局.
现有某学生甲对问题A、B、C、D答对的概率分别为$\frac{3}{4}$、$\frac{1}{2}$、$\frac{1}{3}$、$\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望(均值).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列角中与$\frac{π}{5}$终边相同的是(  )
A.$\frac{18π}{5}$B.$\frac{24π}{5}$C.$\frac{21π}{5}$D.$-\frac{41π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,已知四边形ABFD为直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$为等边三角形,AD=DF=2AF=2,C为DF的质点,如图2,将平面AED、BCF分别沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF、DF,设G为AE上任意一点.
(1)证明:DG∥平面BCF;
(2)求折起后的各平面围成的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的通项公式是an=-4n+78,{an}的前n项和为Sn,则Sn达到最大值时,n的值是(  )
A.17B.18C.19D.20

查看答案和解析>>

同步练习册答案