分析 (Ⅰ)设A、B、C、D分别表示第1、2、3、4个问题用Mi(i=1,2,3,4)表示甲同学第i个问题回答正确,记“甲同学进入下一轮”为事件K,由$P(K)=P({M_1}{M_2}{M_3}+\overline{M_1}{M_2}{M_3}{M_4}+{M_1}\overline{M_2}{M_3}{M_4}+{M_1}{M_2}\overline{M_3}{M_4}+\overline{M_1}{M_2}\overline{M_3}{M_4})$,能求出甲同学能进入下一轮的概率.
(Ⅱ)随机变量ξ的取值为ξ=2,3,4,分别求出相应的概率,由此能求出随机变量ξ的分布列和甲同学答题个数的数学期望.
解答 解:(Ⅰ)设A、B、C、D分别表示第1、2、3、4个问题
用Mi(i=1,2,3,4)表示甲同学第i个问题回答正确
用${\overline M_i}(i=1,2,3,4)$表示甲同学第i个问题回答错误
由题意得$P({M_1})=\frac{3}{4}$、$P({M_2})=\frac{1}{2}$、$P({M_3})=\frac{1}{3}$、$P({M_4})=\frac{1}{4}$,(2分)
记“甲同学进入下一轮”为事件K,
则$P(K)=P({M_1}{M_2}{M_3}+\overline{M_1}{M_2}{M_3}{M_4}+{M_1}\overline{M_2}{M_3}{M_4}+{M_1}{M_2}\overline{M_3}{M_4}+\overline{M_1}{M_2}\overline{M_3}{M_4})$
=$\frac{3}{4}×\frac{1}{2}×\frac{1}{3}+\frac{1}{4}×\frac{1}{2}×\frac{1}{3}×\frac{1}{4}+\frac{3}{4}×\frac{1}{2}×\frac{1}{3}×\frac{1}{4}+\frac{3}{4}×\frac{1}{2}×\frac{2}{3}×\frac{1}{4}+\frac{1}{4}×\frac{1}{2}×\frac{2}{3}×\frac{1}{4}$=$\frac{1}{4}$,
∴甲同学能进入下一轮的概率为$\frac{1}{4}$.(6分)
(Ⅱ)随机变量ξ的取值为ξ=2,3,4,(7分)
ξ=2表示回答两道题都错,淘汰出局,$P(ξ=2)=\frac{1}{4}×\frac{1}{2}=\frac{1}{8}$,(9分)
ξ=3表示回答三道题答题结束,包括M1M2M3,${M_1}\overline{M_2}\overline{M_3}$,
∴$P(ξ=3)=\frac{3}{4}×\frac{1}{2}×\frac{1}{3}+\frac{3}{4}×\frac{1}{2}×\frac{2}{3}=\frac{3}{8}$,(11分)
$P(ξ=4)=1-P(ξ=2)-P(ξ=3)=\frac{1}{2}$,(12分)
则随机变量ξ的分布列为:
| ξ | 2 | 3 | 4 |
| P | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{1}{2}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式和互斥事件概率加法公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com