精英家教网 > 高中数学 > 题目详情
15.已知抛物线x2=4y的焦点F和点A(-1,6),P为抛物线上一点,则|PA|+|PF|的最小值是7.

分析 由条件利用抛物线的定义和简单性质可得当P、A、F三点共线时,|PA|+|PF|的最小值为yA-(-1),从而得出结论.

解答 解:∵抛物线x2=4y的焦点F(0,1 )、准线为y=-1,
∵点A(-1,6),P为抛物线上一点,故当P、A、F三点共线时,
|PA|+|PF|的最小值为yA-(-1)=6+1=7,
故答案为:7.

点评 本题主要考查抛物线的定义和简单性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.今年我校高中部在全市初三学生中进行自主招生试点,通过面试招录35名优秀初三毕业生,第一轮面试共有从易到难的A、B、C、D四个问题,规则如下:
(1)每位参加者都必须按问题A、B、C、D顺序作答,直至答题结束;
(2)每位参加者计分器的初始分数都是100分,答对问题A加10分,答对问题B加20分,答对问题C加30分,答对问题D加60分,答错任意一题减20分;
(3)每回答一题,计分器显示累计分数,当累计分数小于80分时,答题结束,直接淘汰出局;
(4)当累计分数大于或等于140分时,答题结束,直接进入下一轮;
(5)当答完四题,累计分数仍不足140分时,答题结束,淘汰出局.
现有某学生甲对问题A、B、C、D答对的概率分别为$\frac{3}{4}$、$\frac{1}{2}$、$\frac{1}{3}$、$\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望(均值).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线y=x+m与椭圆$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{25}$=1有两个公共点,则m的取值范围是(  )
A.(-5,5)B.(-12,12)C.(-13,13)D.(-15,15)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$,且目标函数z=2x+y的最大值为7,最小值为1,则$\frac{4y-\frac{c}{a}}{x+\frac{c}{b}}$的取值范围是(  )
A.[-$\frac{1}{3}$,$\frac{10}{3}$]B.[-$\frac{1}{3}$,$\frac{8}{3}$]C.[-$\frac{2}{3}$,$\frac{14}{3}$]D.[-$\frac{2}{3}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的通项公式是an=-4n+78,{an}的前n项和为Sn,则Sn达到最大值时,n的值是(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=90°,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求二面角B-A1C-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|y=log2(2-x)},B={x|x-a<0},若A∩B=A,则实数a的取值范围是(  )
A.(-∞,-2]B.[-2,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)满足f(2x-3)=4x2+2x+1.
(1)求f(x)的解析式;
(2)设g(x)=f(x+a)-7x,a∈R,试求g(x)在[1,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是某几何体的三视图,则这个几何体是(  )
A.三棱柱B.圆柱C.正方体D.三棱锥

查看答案和解析>>

同步练习册答案