精英家教网 > 高中数学 > 题目详情
20.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=90°,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求二面角B-A1C-D的余弦值.

分析 (1)推导出BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC,由CD∥BE,能证明CD⊥平面A1OC.
(2)以O为原点,OB为x轴,OC为y轴,OA1为z轴,建立空间直角坐标系,利用向量法能求出二面角B-A1C-D的余弦值.

解答 证明:(1)在图1中,
∵AB=BC=1,AD=2,E是AD的中点,∠BAD=$\frac{π}{2}$,
∴BE⊥AC,
∴在图2中,BE⊥OA1,BE⊥OC,
∴BE⊥平面A1OC,
又CD∥BE,∴CD⊥平面A1OC.
解:(2)∵平面A1BE⊥平面BCDE,∴AO⊥平面BCDE,
以O为原点,OB为x轴,OC为y轴,OA1为z轴,建立空间直角坐标系,
B($\frac{\sqrt{2}}{2}$,0,0),A1(0,0,$\frac{\sqrt{2}}{2}$),E(-$\frac{\sqrt{2}}{2}$,0,0),C(0,$\frac{\sqrt{2}}{2}$,0),D(-$\sqrt{2}$,$\frac{\sqrt{2}}{2}$,0),
$\overrightarrow{{A}_{1}B}$=($\frac{\sqrt{2}}{2}$,0,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{{A}_{1}C}$=(0,$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{{A}_{1}D}$=(-$\sqrt{2},\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),
设平面A1BC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}B}=\frac{\sqrt{2}}{2}x-\frac{\sqrt{2}}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=\frac{\sqrt{2}}{2}y-\frac{\sqrt{2}}{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,1),
设平面A1CD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}C}=\frac{\sqrt{2}}{2}b-\frac{\sqrt{2}}{2}c=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}D}=-\sqrt{2}a+\frac{\sqrt{2}}{2}b-\frac{\sqrt{2}}{2}c=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,1),
设二面角B-A1C-D的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}•\sqrt{2}}$=$\frac{\sqrt{6}}{3}$.
∴二面角B-A1C-D的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+b(a>0且a≠1)的图象经过点(2,0),(0,-2).
(1)求a和b的值;
(2)求当x∈[2,4]时,函数y=f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a=(2,5),\overrightarrow b=(-3,6)$,则$\overrightarrow a-\overrightarrow b$=(  )
A.(5,-1)B.(1,-1)C.(-5,1)D.(5,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式$\frac{(x-1)(2-x)}{x+1}>0$的解集是(  )
A.(-∞,-1)∪(1,2)B.(-1,1)∪(2,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知抛物线x2=4y的焦点F和点A(-1,6),P为抛物线上一点,则|PA|+|PF|的最小值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设数列{an}满足:a1=2,an+1=1-$\frac{1}{a_n}$,记数列{an}的前n项之积为Πn,则Π2014的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈(0,+∞),2x<x2,命题q:?x∈(0,+∞),x+$\frac{1}{x}$-2>0,则.(  )
A.p∨q为假B.p∧q为真C.p∧¬q为真D.p∧¬q为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.金老师为投资理财,考虑了两种投资计划,
计划A:从2015年初开始购买投资产品,每个月1号投资,第一次投次1500元钱,用于购买“余额宝”,“余额宝”的月收益率为0.5%(类似于银行存款,月底结算利息);
计划B:从2015年初开始购买投资产品,每个月1号投资,第一次投次1000元钱,以后每一次比上一次多投资200元,用于购买同一只股票,到2016年底(2016年12月31日),这只股票收益50%的概率为$\frac{1}{4}$,亏损$\frac{1}{12}$的概率为$\frac{3}{4}$.若两计划的收益均不考虑手续费.
(1)求计划B到2016年底的收益的期望值;
(2)根据2016年年底的收益,从收益率的角度出发,试问你将选择何种投资?
(注:收益率=$\frac{收益}{投资总额}$,参考数据1.00524≈1.13,$\frac{7}{80}$≈0.0875,$\frac{11}{176}$≈0.0625)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α∈(0,$\frac{π}{4}$),0<m<1,a=logm$\frac{1}{sinα}$,b=msinα,c=mcosα,则(  )
A.c>a>bB.b>a>cC.a>c>bD.b>c>a

查看答案和解析>>

同步练习册答案